ਮੁਲਾਂਕਣ ਕਰੋ
0
ਫੈਕਟਰ
0
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\left(-3\right)^{3}\left(a^{2}\right)^{3}x^{3}\left(\left(-a\right)x\right)^{2}-\left(\left(-a\right)x\right)^{5}\times \left(3a\right)^{3}
\left(-3a^{2}x\right)^{3} ਦਾ ਵਿਸਥਾਰ ਕਰੋ।
\left(-3\right)^{3}a^{6}x^{3}\left(\left(-a\right)x\right)^{2}-\left(\left(-a\right)x\right)^{5}\times \left(3a\right)^{3}
ਕਿਸੇ ਹੋਰ ਨੰਬਰ ਦੀ ਪਾਵਰ ਨੂੰ ਵਧਾਉਣ ਲਈ, ਐਕਸਪੋਨੈਂਟਾਂ ਨੂੰ ਗੁਣਾ ਕਰੋ। 6 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2 ਅਤੇ 3 ਨੂੰ ਗੁਣਾ ਕਰੋ।
-27a^{6}x^{3}\left(\left(-a\right)x\right)^{2}-\left(\left(-a\right)x\right)^{5}\times \left(3a\right)^{3}
-3 ਨੂੰ 3 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ -27 ਪ੍ਰਾਪਤ ਕਰੋ।
-27a^{6}x^{3}\left(-a\right)^{2}x^{2}-\left(\left(-a\right)x\right)^{5}\times \left(3a\right)^{3}
\left(\left(-a\right)x\right)^{2} ਦਾ ਵਿਸਥਾਰ ਕਰੋ।
-27a^{6}x^{3}a^{2}x^{2}-\left(\left(-a\right)x\right)^{5}\times \left(3a\right)^{3}
-a ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ a^{2} ਪ੍ਰਾਪਤ ਕਰੋ।
-27a^{8}x^{3}x^{2}-\left(\left(-a\right)x\right)^{5}\times \left(3a\right)^{3}
ਸਮਾਨ ਬੇਸ ਦੀਆਂ ਪਾਵਰਾਂ ਨੂੰ ਗੁਣਾ ਕਰਨ ਲਈ, ਉਹਨਾਂ ਦੇ ਐਕਸਪੋਨੈਂਟਾਂ ਨੂੰ ਜੋੜੋ। 8 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 6 ਅਤੇ 2 ਨੂੰ ਜੋੜੋ।
-27a^{8}x^{5}-\left(\left(-a\right)x\right)^{5}\times \left(3a\right)^{3}
ਸਮਾਨ ਬੇਸ ਦੀਆਂ ਪਾਵਰਾਂ ਨੂੰ ਗੁਣਾ ਕਰਨ ਲਈ, ਉਹਨਾਂ ਦੇ ਐਕਸਪੋਨੈਂਟਾਂ ਨੂੰ ਜੋੜੋ। 5 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 3 ਅਤੇ 2 ਨੂੰ ਜੋੜੋ।
-27a^{8}x^{5}-\left(-a\right)^{5}x^{5}\times \left(3a\right)^{3}
\left(\left(-a\right)x\right)^{5} ਦਾ ਵਿਸਥਾਰ ਕਰੋ।
-27a^{8}x^{5}-\left(-a\right)^{5}x^{5}\times 3^{3}a^{3}
\left(3a\right)^{3} ਦਾ ਵਿਸਥਾਰ ਕਰੋ।
-27a^{8}x^{5}-\left(-a\right)^{5}x^{5}\times 27a^{3}
3 ਨੂੰ 3 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 27 ਪ੍ਰਾਪਤ ਕਰੋ।
-27a^{8}x^{5}-\left(-1\right)^{5}a^{5}x^{5}\times 27a^{3}
\left(-a\right)^{5} ਦਾ ਵਿਸਥਾਰ ਕਰੋ।
-27a^{8}x^{5}-\left(-a^{5}x^{5}\times 27a^{3}\right)
-1 ਨੂੰ 5 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ -1 ਪ੍ਰਾਪਤ ਕਰੋ।
-27a^{8}x^{5}+a^{5}x^{5}\times 27a^{3}
1 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -1 ਅਤੇ -1 ਨੂੰ ਗੁਣਾ ਕਰੋ।
-27a^{8}x^{5}+a^{8}x^{5}\times 27
ਸਮਾਨ ਬੇਸ ਦੀਆਂ ਪਾਵਰਾਂ ਨੂੰ ਗੁਣਾ ਕਰਨ ਲਈ, ਉਹਨਾਂ ਦੇ ਐਕਸਪੋਨੈਂਟਾਂ ਨੂੰ ਜੋੜੋ। 8 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 5 ਅਤੇ 3 ਨੂੰ ਜੋੜੋ।
0
0 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -27a^{8}x^{5} ਅਤੇ a^{8}x^{5}\times 27 ਨੂੰ ਮਿਲਾਓ।
\left(ax\right)^{2}\left(-27x^{3}a^{6}+27x^{3}a^{6}\right)
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੌਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੋਮਨ ਟਰਮ \left(ax\right)^{2} ਦਾ ਫੈਕਟਰ ਕੱਢੋ।
0
-27x^{3}a^{6}+27x^{3}a^{6} 'ਤੇ ਵਿਚਾਰ ਕਰੋ। ਸਪਸ਼ਟ ਕਰੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}