ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

x^{2}-5x+3=8
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x^{2}-5x+3-8=8-8
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 8 ਨੂੰ ਘਟਾਓ।
x^{2}-5x+3-8=0
8 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
x^{2}-5x-5=0
3 ਵਿੱਚੋਂ 8 ਨੂੰ ਘਟਾਓ।
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-5\right)}}{2}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 1 ਨੂੰ a ਲਈ, -5 ਨੂੰ b ਲਈ, ਅਤੇ -5 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-\left(-5\right)±\sqrt{25-4\left(-5\right)}}{2}
-5 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-\left(-5\right)±\sqrt{25+20}}{2}
-4 ਨੂੰ -5 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-5\right)±\sqrt{45}}{2}
25 ਨੂੰ 20 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\left(-5\right)±3\sqrt{5}}{2}
45 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{5±3\sqrt{5}}{2}
-5 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 5 ਹੈ।
x=\frac{3\sqrt{5}+5}{2}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{5±3\sqrt{5}}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 5 ਨੂੰ 3\sqrt{5} ਵਿੱਚ ਜੋੜੋ।
x=\frac{5-3\sqrt{5}}{2}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{5±3\sqrt{5}}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 5 ਵਿੱਚੋਂ 3\sqrt{5} ਨੂੰ ਘਟਾਓ।
x=\frac{3\sqrt{5}+5}{2} x=\frac{5-3\sqrt{5}}{2}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
x^{2}-5x+3=8
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
x^{2}-5x+3-3=8-3
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 3 ਨੂੰ ਘਟਾਓ।
x^{2}-5x=8-3
3 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
x^{2}-5x=5
8 ਵਿੱਚੋਂ 3 ਨੂੰ ਘਟਾਓ।
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=5+\left(-\frac{5}{2}\right)^{2}
-5, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -\frac{5}{2} ਨਿਕਲੇ। ਫੇਰ, -\frac{5}{2} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}-5x+\frac{25}{4}=5+\frac{25}{4}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ -\frac{5}{2} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}-5x+\frac{25}{4}=\frac{45}{4}
5 ਨੂੰ \frac{25}{4} ਵਿੱਚ ਜੋੜੋ।
\left(x-\frac{5}{2}\right)^{2}=\frac{45}{4}
ਫੈਕਟਰ x^{2}-5x+\frac{25}{4}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{45}{4}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x-\frac{5}{2}=\frac{3\sqrt{5}}{2} x-\frac{5}{2}=-\frac{3\sqrt{5}}{2}
ਸਪਸ਼ਟ ਕਰੋ।
x=\frac{3\sqrt{5}+5}{2} x=\frac{5-3\sqrt{5}}{2}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{5}{2} ਨੂੰ ਜੋੜੋ।