a ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
a\in \mathrm{C}
b ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
b\in \mathrm{C}
a ਲਈ ਹਲ ਕਰੋ
a\geq 0
b\geq 0
b ਲਈ ਹਲ ਕਰੋ
b\geq 0
a\geq 0
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\left(\sqrt{a}\right)^{2}-\left(\sqrt{b}\right)^{2}=a-b
\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right) 'ਤੇ ਵਿਚਾਰ ਕਰੋ। ਨਿਯਮ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਗੁਣਾ ਨੂੰ ਵਰਗਾਂ ਦੇ ਅੰਤਰ ਵਿੱਚ ਬਦਲਿਆ ਜਾ ਸਕਦਾ ਹੈ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}।
a-\left(\sqrt{b}\right)^{2}=a-b
\sqrt{a} ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ a ਪ੍ਰਾਪਤ ਕਰੋ।
a-b=a-b
\sqrt{b} ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ b ਪ੍ਰਾਪਤ ਕਰੋ।
a-b-a=-b
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ a ਨੂੰ ਘਟਾ ਦਿਓ।
-b=-b
0 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ a ਅਤੇ -a ਨੂੰ ਮਿਲਾਓ।
b=b
-1 ਨੂੰ ਦੋਨਾਂ ਪਾਸਿਆਂ 'ਤੇ ਰੱਦ ਕਰੋ।
\text{true}
ਸੰਖਿਆਵਾਂ ਨੂੰ ਦੁਬਾਰਾ ਤਰਤੀਬ ਦਿਓ।
a\in \mathrm{C}
ਇਹ ਕਿਸੇ ਵੀ a ਲਈ ਸਹੀ ਹੈ।
\left(\sqrt{a}\right)^{2}-\left(\sqrt{b}\right)^{2}=a-b
\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right) 'ਤੇ ਵਿਚਾਰ ਕਰੋ। ਨਿਯਮ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਗੁਣਾ ਨੂੰ ਵਰਗਾਂ ਦੇ ਅੰਤਰ ਵਿੱਚ ਬਦਲਿਆ ਜਾ ਸਕਦਾ ਹੈ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}।
a-\left(\sqrt{b}\right)^{2}=a-b
\sqrt{a} ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ a ਪ੍ਰਾਪਤ ਕਰੋ।
a-b=a-b
\sqrt{b} ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ b ਪ੍ਰਾਪਤ ਕਰੋ।
a-b+b=a
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ b ਜੋੜੋ।
a=a
0 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -b ਅਤੇ b ਨੂੰ ਮਿਲਾਓ।
\text{true}
ਸੰਖਿਆਵਾਂ ਨੂੰ ਦੁਬਾਰਾ ਤਰਤੀਬ ਦਿਓ।
b\in \mathrm{C}
ਇਹ ਕਿਸੇ ਵੀ b ਲਈ ਸਹੀ ਹੈ।
\left(\sqrt{a}\right)^{2}-\left(\sqrt{b}\right)^{2}=a-b
\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right) 'ਤੇ ਵਿਚਾਰ ਕਰੋ। ਨਿਯਮ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਗੁਣਾ ਨੂੰ ਵਰਗਾਂ ਦੇ ਅੰਤਰ ਵਿੱਚ ਬਦਲਿਆ ਜਾ ਸਕਦਾ ਹੈ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}।
a-\left(\sqrt{b}\right)^{2}=a-b
\sqrt{a} ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ a ਪ੍ਰਾਪਤ ਕਰੋ।
a-b=a-b
\sqrt{b} ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ b ਪ੍ਰਾਪਤ ਕਰੋ।
a-b-a=-b
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ a ਨੂੰ ਘਟਾ ਦਿਓ।
-b=-b
0 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ a ਅਤੇ -a ਨੂੰ ਮਿਲਾਓ।
b=b
-1 ਨੂੰ ਦੋਨਾਂ ਪਾਸਿਆਂ 'ਤੇ ਰੱਦ ਕਰੋ।
\text{true}
ਸੰਖਿਆਵਾਂ ਨੂੰ ਦੁਬਾਰਾ ਤਰਤੀਬ ਦਿਓ।
a\in \mathrm{R}
ਇਹ ਕਿਸੇ ਵੀ a ਲਈ ਸਹੀ ਹੈ।
\left(\sqrt{a}\right)^{2}-\left(\sqrt{b}\right)^{2}=a-b
\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right) 'ਤੇ ਵਿਚਾਰ ਕਰੋ। ਨਿਯਮ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਗੁਣਾ ਨੂੰ ਵਰਗਾਂ ਦੇ ਅੰਤਰ ਵਿੱਚ ਬਦਲਿਆ ਜਾ ਸਕਦਾ ਹੈ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}।
a-\left(\sqrt{b}\right)^{2}=a-b
\sqrt{a} ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ a ਪ੍ਰਾਪਤ ਕਰੋ।
a-b=a-b
\sqrt{b} ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ b ਪ੍ਰਾਪਤ ਕਰੋ।
a-b+b=a
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ b ਜੋੜੋ।
a=a
0 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -b ਅਤੇ b ਨੂੰ ਮਿਲਾਓ।
\text{true}
ਸੰਖਿਆਵਾਂ ਨੂੰ ਦੁਬਾਰਾ ਤਰਤੀਬ ਦਿਓ।
b\in \mathrm{R}
ਇਹ ਕਿਸੇ ਵੀ b ਲਈ ਸਹੀ ਹੈ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}