ਮੁਲਾਂਕਣ ਕਰੋ
-\frac{32}{3}\approx -10.666666667
ਫੈਕਟਰ
-\frac{32}{3} = -10\frac{2}{3} = -10.666666666666666
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\frac{8}{3}-\frac{24}{3}-\left(-\frac{8}{3}+8\right)
8 ਨੂੰ \frac{24}{3} ਅੰਸ਼ 'ਤੇ ਬਦਲੋ।
\frac{8-24}{3}-\left(-\frac{8}{3}+8\right)
ਕਿਉਂਕਿ \frac{8}{3} ਅਤੇ \frac{24}{3} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
-\frac{16}{3}-\left(-\frac{8}{3}+8\right)
-16 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 8 ਵਿੱਚੋਂ 24 ਨੂੰ ਘਟਾ ਦਿਓ।
-\frac{16}{3}-\left(-\frac{8}{3}+\frac{24}{3}\right)
8 ਨੂੰ \frac{24}{3} ਅੰਸ਼ 'ਤੇ ਬਦਲੋ।
-\frac{16}{3}-\frac{-8+24}{3}
ਕਿਉਂਕਿ -\frac{8}{3} ਅਤੇ \frac{24}{3} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
-\frac{16}{3}-\frac{16}{3}
16 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -8 ਅਤੇ 24 ਨੂੰ ਜੋੜੋ।
\frac{-16-16}{3}
ਕਿਉਂਕਿ -\frac{16}{3} ਅਤੇ \frac{16}{3} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
-\frac{32}{3}
-32 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -16 ਵਿੱਚੋਂ 16 ਨੂੰ ਘਟਾ ਦਿਓ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}