x ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
x=\frac{-3\sqrt{791}i-391}{16}\approx -24.4375-5.273385416i
x=\frac{-391+3\sqrt{791}i}{16}\approx -24.4375+5.273385416i
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\frac{6^{2}}{\left(25+x\right)^{2}}x=32
\frac{6}{25+x} ਦੀ ਪਾਵਰ ਵਧਾਉਣ ਲਈ, ਅੰਸ਼ ਅਤੇ ਹਰ ਦੋਹਾਂ ਦੀ ਪਾਵਰ ਵਧਾਓ ਅਤੇ ਫੇਰ ਤਕਸੀਮ ਕਰੋ।
\frac{6^{2}x}{\left(25+x\right)^{2}}=32
\frac{6^{2}}{\left(25+x\right)^{2}}x ਨੂੰ ਇੱਕੋ ਫ੍ਰੈਕਸ਼ਨ ਵਜੋਂ ਜਾਹਰ ਕਰੋ।
\frac{36x}{\left(25+x\right)^{2}}=32
6 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 36 ਪ੍ਰਾਪਤ ਕਰੋ।
\frac{36x}{625+50x+x^{2}}=32
\left(25+x\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
\frac{36x}{625+50x+x^{2}}-32=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 32 ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{36x}{\left(x+25\right)^{2}}-32=0
625+50x+x^{2} ਨੂੰ ਵੱਖਰਾ ਕਰ ਦਿਓ।
\frac{36x}{\left(x+25\right)^{2}}-\frac{32\left(x+25\right)^{2}}{\left(x+25\right)^{2}}=0
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। 32 ਨੂੰ \frac{\left(x+25\right)^{2}}{\left(x+25\right)^{2}} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{36x-32\left(x+25\right)^{2}}{\left(x+25\right)^{2}}=0
ਕਿਉਂਕਿ \frac{36x}{\left(x+25\right)^{2}} ਅਤੇ \frac{32\left(x+25\right)^{2}}{\left(x+25\right)^{2}} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{36x-32x^{2}-1600x-20000}{\left(x+25\right)^{2}}=0
36x-32\left(x+25\right)^{2} ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{-1564x-32x^{2}-20000}{\left(x+25\right)^{2}}=0
36x-32x^{2}-1600x-20000 ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
-1564x-32x^{2}-20000=0
ਵੇਰੀਏਬਲ x, -25 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ \left(x+25\right)^{2} ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
-32x^{2}-1564x-20000=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-\left(-1564\right)±\sqrt{\left(-1564\right)^{2}-4\left(-32\right)\left(-20000\right)}}{2\left(-32\right)}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ -32 ਨੂੰ a ਲਈ, -1564 ਨੂੰ b ਲਈ, ਅਤੇ -20000 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-\left(-1564\right)±\sqrt{2446096-4\left(-32\right)\left(-20000\right)}}{2\left(-32\right)}
-1564 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-\left(-1564\right)±\sqrt{2446096+128\left(-20000\right)}}{2\left(-32\right)}
-4 ਨੂੰ -32 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-1564\right)±\sqrt{2446096-2560000}}{2\left(-32\right)}
128 ਨੂੰ -20000 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-1564\right)±\sqrt{-113904}}{2\left(-32\right)}
2446096 ਨੂੰ -2560000 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\left(-1564\right)±12\sqrt{791}i}{2\left(-32\right)}
-113904 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{1564±12\sqrt{791}i}{2\left(-32\right)}
-1564 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 1564 ਹੈ।
x=\frac{1564±12\sqrt{791}i}{-64}
2 ਨੂੰ -32 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{1564+12\sqrt{791}i}{-64}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{1564±12\sqrt{791}i}{-64} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 1564 ਨੂੰ 12i\sqrt{791} ਵਿੱਚ ਜੋੜੋ।
x=\frac{-3\sqrt{791}i-391}{16}
1564+12i\sqrt{791} ਨੂੰ -64 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{-12\sqrt{791}i+1564}{-64}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{1564±12\sqrt{791}i}{-64} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 1564 ਵਿੱਚੋਂ 12i\sqrt{791} ਨੂੰ ਘਟਾਓ।
x=\frac{-391+3\sqrt{791}i}{16}
1564-12i\sqrt{791} ਨੂੰ -64 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{-3\sqrt{791}i-391}{16} x=\frac{-391+3\sqrt{791}i}{16}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
\frac{6^{2}}{\left(25+x\right)^{2}}x=32
\frac{6}{25+x} ਦੀ ਪਾਵਰ ਵਧਾਉਣ ਲਈ, ਅੰਸ਼ ਅਤੇ ਹਰ ਦੋਹਾਂ ਦੀ ਪਾਵਰ ਵਧਾਓ ਅਤੇ ਫੇਰ ਤਕਸੀਮ ਕਰੋ।
\frac{6^{2}x}{\left(25+x\right)^{2}}=32
\frac{6^{2}}{\left(25+x\right)^{2}}x ਨੂੰ ਇੱਕੋ ਫ੍ਰੈਕਸ਼ਨ ਵਜੋਂ ਜਾਹਰ ਕਰੋ।
\frac{36x}{\left(25+x\right)^{2}}=32
6 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 36 ਪ੍ਰਾਪਤ ਕਰੋ।
\frac{36x}{625+50x+x^{2}}=32
\left(25+x\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
36x=32\left(x+25\right)^{2}
ਵੇਰੀਏਬਲ x, -25 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ \left(x+25\right)^{2} ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
36x=32\left(x^{2}+50x+625\right)
\left(x+25\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
36x=32x^{2}+1600x+20000
32 ਨੂੰ x^{2}+50x+625 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
36x-32x^{2}=1600x+20000
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 32x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
36x-32x^{2}-1600x=20000
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 1600x ਨੂੰ ਘਟਾ ਦਿਓ।
-1564x-32x^{2}=20000
-1564x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 36x ਅਤੇ -1600x ਨੂੰ ਮਿਲਾਓ।
-32x^{2}-1564x=20000
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
\frac{-32x^{2}-1564x}{-32}=\frac{20000}{-32}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -32 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\left(-\frac{1564}{-32}\right)x=\frac{20000}{-32}
-32 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -32 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}+\frac{391}{8}x=\frac{20000}{-32}
4 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{-1564}{-32} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x^{2}+\frac{391}{8}x=-625
20000 ਨੂੰ -32 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}+\frac{391}{8}x+\left(\frac{391}{16}\right)^{2}=-625+\left(\frac{391}{16}\right)^{2}
\frac{391}{8}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ \frac{391}{16} ਨਿਕਲੇ। ਫੇਰ, \frac{391}{16} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}+\frac{391}{8}x+\frac{152881}{256}=-625+\frac{152881}{256}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ \frac{391}{16} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}+\frac{391}{8}x+\frac{152881}{256}=-\frac{7119}{256}
-625 ਨੂੰ \frac{152881}{256} ਵਿੱਚ ਜੋੜੋ।
\left(x+\frac{391}{16}\right)^{2}=-\frac{7119}{256}
ਫੈਕਟਰ x^{2}+\frac{391}{8}x+\frac{152881}{256}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x+\frac{391}{16}\right)^{2}}=\sqrt{-\frac{7119}{256}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x+\frac{391}{16}=\frac{3\sqrt{791}i}{16} x+\frac{391}{16}=-\frac{3\sqrt{791}i}{16}
ਸਪਸ਼ਟ ਕਰੋ।
x=\frac{-391+3\sqrt{791}i}{16} x=\frac{-3\sqrt{791}i-391}{16}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \frac{391}{16} ਨੂੰ ਘਟਾਓ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}