ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
ਮੁਲਾਂਕਣ ਕਰੋ
Tick mark Image
ਅੰਤਰ ਦੱਸੋ w.r.t. x
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

\frac{\frac{\left(2x+3\right)\left(2x+3\right)}{\left(2x-3\right)\left(2x+3\right)}-\frac{\left(2x-3\right)\left(2x-3\right)}{\left(2x-3\right)\left(2x+3\right)}}{\frac{24}{4x^{2}-9}}
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। 2x-3 ਅਤੇ 2x+3 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ \left(2x-3\right)\left(2x+3\right) ਹੈ। \frac{2x+3}{2x-3} ਨੂੰ \frac{2x+3}{2x+3} ਵਾਰ ਗੁਣਾ ਕਰੋ। \frac{2x-3}{2x+3} ਨੂੰ \frac{2x-3}{2x-3} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{\frac{\left(2x+3\right)\left(2x+3\right)-\left(2x-3\right)\left(2x-3\right)}{\left(2x-3\right)\left(2x+3\right)}}{\frac{24}{4x^{2}-9}}
ਕਿਉਂਕਿ \frac{\left(2x+3\right)\left(2x+3\right)}{\left(2x-3\right)\left(2x+3\right)} ਅਤੇ \frac{\left(2x-3\right)\left(2x-3\right)}{\left(2x-3\right)\left(2x+3\right)} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{\frac{4x^{2}+6x+6x+9-4x^{2}+6x+6x-9}{\left(2x-3\right)\left(2x+3\right)}}{\frac{24}{4x^{2}-9}}
\left(2x+3\right)\left(2x+3\right)-\left(2x-3\right)\left(2x-3\right) ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{\frac{24x}{\left(2x-3\right)\left(2x+3\right)}}{\frac{24}{4x^{2}-9}}
4x^{2}+6x+6x+9-4x^{2}+6x+6x-9 ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
\frac{24x\left(4x^{2}-9\right)}{\left(2x-3\right)\left(2x+3\right)\times 24}
\frac{24x}{\left(2x-3\right)\left(2x+3\right)} ਨੂੰ \frac{24}{4x^{2}-9} ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ \frac{24x}{\left(2x-3\right)\left(2x+3\right)}ਨੂੰ \frac{24}{4x^{2}-9} ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
\frac{x\left(4x^{2}-9\right)}{\left(2x-3\right)\left(2x+3\right)}
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਦੋਹਾਂ ਵਿੱਚ 24 ਨੂੰ ਰੱਦ ਕਰੋ।
\frac{x\left(2x-3\right)\left(2x+3\right)}{\left(2x-3\right)\left(2x+3\right)}
ਫੈਕਟਰ ਨਾ ਕੀਤੇ ਏਕਸਪ੍ਰੈਸ਼ਨਾਂ ਨੂੰ ਫੈਕਟਰ ਕਰੋ।
x
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਦੋਹਾਂ ਵਿੱਚ \left(2x-3\right)\left(2x+3\right) ਨੂੰ ਰੱਦ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{\left(2x+3\right)\left(2x+3\right)}{\left(2x-3\right)\left(2x+3\right)}-\frac{\left(2x-3\right)\left(2x-3\right)}{\left(2x-3\right)\left(2x+3\right)}}{\frac{24}{4x^{2}-9}})
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। 2x-3 ਅਤੇ 2x+3 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ \left(2x-3\right)\left(2x+3\right) ਹੈ। \frac{2x+3}{2x-3} ਨੂੰ \frac{2x+3}{2x+3} ਵਾਰ ਗੁਣਾ ਕਰੋ। \frac{2x-3}{2x+3} ਨੂੰ \frac{2x-3}{2x-3} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{\left(2x+3\right)\left(2x+3\right)-\left(2x-3\right)\left(2x-3\right)}{\left(2x-3\right)\left(2x+3\right)}}{\frac{24}{4x^{2}-9}})
ਕਿਉਂਕਿ \frac{\left(2x+3\right)\left(2x+3\right)}{\left(2x-3\right)\left(2x+3\right)} ਅਤੇ \frac{\left(2x-3\right)\left(2x-3\right)}{\left(2x-3\right)\left(2x+3\right)} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{4x^{2}+6x+6x+9-4x^{2}+6x+6x-9}{\left(2x-3\right)\left(2x+3\right)}}{\frac{24}{4x^{2}-9}})
\left(2x+3\right)\left(2x+3\right)-\left(2x-3\right)\left(2x-3\right) ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{24x}{\left(2x-3\right)\left(2x+3\right)}}{\frac{24}{4x^{2}-9}})
4x^{2}+6x+6x+9-4x^{2}+6x+6x-9 ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{24x\left(4x^{2}-9\right)}{\left(2x-3\right)\left(2x+3\right)\times 24})
\frac{24x}{\left(2x-3\right)\left(2x+3\right)} ਨੂੰ \frac{24}{4x^{2}-9} ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ \frac{24x}{\left(2x-3\right)\left(2x+3\right)}ਨੂੰ \frac{24}{4x^{2}-9} ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x\left(4x^{2}-9\right)}{\left(2x-3\right)\left(2x+3\right)})
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਦੋਹਾਂ ਵਿੱਚ 24 ਨੂੰ ਰੱਦ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x\left(2x-3\right)\left(2x+3\right)}{\left(2x-3\right)\left(2x+3\right)})
\frac{x\left(4x^{2}-9\right)}{\left(2x-3\right)\left(2x+3\right)} ਵਿੱਚ ਪਹਿਲਾਂ ਹੀ ਫੈਕਟਰ ਨਾ ਕੀਤੇ ਏਕਸਪ੍ਰੈਸ਼ਨਾਂ ਨੂੰ ਫੈਕਟਰ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}x}(x)
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਦੋਹਾਂ ਵਿੱਚ \left(2x-3\right)\left(2x+3\right) ਨੂੰ ਰੱਦ ਕਰੋ।
x^{1-1}
ax^{n} ਦਾ ਡੈਰੀਵੇਟਿਵ nax^{n-1} ਹੈ।
x^{0}
1 ਵਿੱਚੋਂ 1 ਨੂੰ ਘਟਾਓ।
1
ਕਿਸੇ ਵੀ t ਸੰਖਿਆ ਲਈ, 0, t^{0}=1 ਨੂੰ ਛੱਡ ਕੇ।