ਮੁਲਾਂਕਣ ਕਰੋ
\frac{3n}{m+n}
ਵਿਸਤਾਰ ਕਰੋ
\frac{3n}{m+n}
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\frac{\frac{m+n}{\left(m+n\right)\left(m-n\right)}-\frac{m-n}{\left(m+n\right)\left(m-n\right)}}{\frac{2}{3m-3n}}
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। m-n ਅਤੇ m+n ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ \left(m+n\right)\left(m-n\right) ਹੈ। \frac{1}{m-n} ਨੂੰ \frac{m+n}{m+n} ਵਾਰ ਗੁਣਾ ਕਰੋ। \frac{1}{m+n} ਨੂੰ \frac{m-n}{m-n} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{\frac{m+n-\left(m-n\right)}{\left(m+n\right)\left(m-n\right)}}{\frac{2}{3m-3n}}
ਕਿਉਂਕਿ \frac{m+n}{\left(m+n\right)\left(m-n\right)} ਅਤੇ \frac{m-n}{\left(m+n\right)\left(m-n\right)} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{\frac{m+n-m+n}{\left(m+n\right)\left(m-n\right)}}{\frac{2}{3m-3n}}
m+n-\left(m-n\right) ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{\frac{2n}{\left(m+n\right)\left(m-n\right)}}{\frac{2}{3m-3n}}
m+n-m+n ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
\frac{2n\left(3m-3n\right)}{\left(m+n\right)\left(m-n\right)\times 2}
\frac{2n}{\left(m+n\right)\left(m-n\right)} ਨੂੰ \frac{2}{3m-3n} ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ \frac{2n}{\left(m+n\right)\left(m-n\right)}ਨੂੰ \frac{2}{3m-3n} ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
\frac{n\left(3m-3n\right)}{\left(m+n\right)\left(m-n\right)}
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਦੋਹਾਂ ਵਿੱਚ 2 ਨੂੰ ਰੱਦ ਕਰੋ।
\frac{3n\left(m-n\right)}{\left(m+n\right)\left(m-n\right)}
ਫੈਕਟਰ ਨਾ ਕੀਤੇ ਏਕਸਪ੍ਰੈਸ਼ਨਾਂ ਨੂੰ ਫੈਕਟਰ ਕਰੋ।
\frac{3n}{m+n}
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਦੋਹਾਂ ਵਿੱਚ m-n ਨੂੰ ਰੱਦ ਕਰੋ।
\frac{\frac{m+n}{\left(m+n\right)\left(m-n\right)}-\frac{m-n}{\left(m+n\right)\left(m-n\right)}}{\frac{2}{3m-3n}}
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। m-n ਅਤੇ m+n ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ \left(m+n\right)\left(m-n\right) ਹੈ। \frac{1}{m-n} ਨੂੰ \frac{m+n}{m+n} ਵਾਰ ਗੁਣਾ ਕਰੋ। \frac{1}{m+n} ਨੂੰ \frac{m-n}{m-n} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{\frac{m+n-\left(m-n\right)}{\left(m+n\right)\left(m-n\right)}}{\frac{2}{3m-3n}}
ਕਿਉਂਕਿ \frac{m+n}{\left(m+n\right)\left(m-n\right)} ਅਤੇ \frac{m-n}{\left(m+n\right)\left(m-n\right)} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{\frac{m+n-m+n}{\left(m+n\right)\left(m-n\right)}}{\frac{2}{3m-3n}}
m+n-\left(m-n\right) ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{\frac{2n}{\left(m+n\right)\left(m-n\right)}}{\frac{2}{3m-3n}}
m+n-m+n ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
\frac{2n\left(3m-3n\right)}{\left(m+n\right)\left(m-n\right)\times 2}
\frac{2n}{\left(m+n\right)\left(m-n\right)} ਨੂੰ \frac{2}{3m-3n} ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ \frac{2n}{\left(m+n\right)\left(m-n\right)}ਨੂੰ \frac{2}{3m-3n} ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
\frac{n\left(3m-3n\right)}{\left(m+n\right)\left(m-n\right)}
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਦੋਹਾਂ ਵਿੱਚ 2 ਨੂੰ ਰੱਦ ਕਰੋ।
\frac{3n\left(m-n\right)}{\left(m+n\right)\left(m-n\right)}
ਫੈਕਟਰ ਨਾ ਕੀਤੇ ਏਕਸਪ੍ਰੈਸ਼ਨਾਂ ਨੂੰ ਫੈਕਟਰ ਕਰੋ।
\frac{3n}{m+n}
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਦੋਹਾਂ ਵਿੱਚ m-n ਨੂੰ ਰੱਦ ਕਰੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}