ਮੁਲਾਂਕਣ ਕਰੋ
-\frac{1}{2}=-0.5
ਫੈਕਟਰ
-\frac{1}{2} = -0.5
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\frac{\frac{5}{20}-\frac{8}{20}}{\frac{1}{2}-\frac{1}{5}}
4 ਅਤੇ 5 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 20 ਹੈ। \frac{1}{4} ਅਤੇ \frac{2}{5} ਨੂੰ 20 ਡਿਨੋਮਿਨੇਟਰ ਵਾਲੇ ਅੰਸ਼ ਵਿੱਚ ਬਦਲੋ।
\frac{\frac{5-8}{20}}{\frac{1}{2}-\frac{1}{5}}
ਕਿਉਂਕਿ \frac{5}{20} ਅਤੇ \frac{8}{20} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{-\frac{3}{20}}{\frac{1}{2}-\frac{1}{5}}
-3 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 5 ਵਿੱਚੋਂ 8 ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{-\frac{3}{20}}{\frac{5}{10}-\frac{2}{10}}
2 ਅਤੇ 5 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 10 ਹੈ। \frac{1}{2} ਅਤੇ \frac{1}{5} ਨੂੰ 10 ਡਿਨੋਮਿਨੇਟਰ ਵਾਲੇ ਅੰਸ਼ ਵਿੱਚ ਬਦਲੋ।
\frac{-\frac{3}{20}}{\frac{5-2}{10}}
ਕਿਉਂਕਿ \frac{5}{10} ਅਤੇ \frac{2}{10} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{-\frac{3}{20}}{\frac{3}{10}}
3 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 5 ਵਿੱਚੋਂ 2 ਨੂੰ ਘਟਾ ਦਿਓ।
-\frac{3}{20}\times \frac{10}{3}
-\frac{3}{20} ਨੂੰ \frac{3}{10} ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ -\frac{3}{20}ਨੂੰ \frac{3}{10} ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
\frac{-3\times 10}{20\times 3}
ਨਿਉਮਰੇਟਰ ਟਾਇਮਸ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਟਾਈਮਸ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਗੁਣਾ ਕਰਕੇ -\frac{3}{20} ਟਾਈਮਸ \frac{10}{3} ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{-30}{60}
\frac{-3\times 10}{20\times 3} ਫ੍ਰੈਕਸ਼ਨ ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
-\frac{1}{2}
30 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{-30}{60} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}