ਮੁਲਾਂਕਣ ਕਰੋ
-1
ਫੈਕਟਰ
-1
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
|\frac{2}{4}-\frac{1}{4}|-5|\frac{1}{4}-\frac{1}{2}|
2 ਅਤੇ 4 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 4 ਹੈ। \frac{1}{2} ਅਤੇ \frac{1}{4} ਨੂੰ 4 ਡਿਨੋਮਿਨੇਟਰ ਵਾਲੇ ਅੰਸ਼ ਵਿੱਚ ਬਦਲੋ।
|\frac{2-1}{4}|-5|\frac{1}{4}-\frac{1}{2}|
ਕਿਉਂਕਿ \frac{2}{4} ਅਤੇ \frac{1}{4} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
|\frac{1}{4}|-5|\frac{1}{4}-\frac{1}{2}|
1 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2 ਵਿੱਚੋਂ 1 ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{1}{4}-5|\frac{1}{4}-\frac{1}{2}|
ਕਿਸੇ ਰਿਅਲ ਨੰਬਰ a ਦੀ ਦੀ ਐਬਸੋਲਿਉਟ ਵੈਲਯੂ a ਹੁੰਦੀ ਹੈ, ਜਦੋਂ a\geq 0, ਜਾਂ -a ਜਦੋਂ a<0 ਹੈ। \frac{1}{4} ਦੀ ਐਬਸੋਲਿਉਟ ਵੈਲਯੂ \frac{1}{4} ਹੈ।
\frac{1}{4}-5|\frac{1}{4}-\frac{2}{4}|
4 ਅਤੇ 2 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 4 ਹੈ। \frac{1}{4} ਅਤੇ \frac{1}{2} ਨੂੰ 4 ਡਿਨੋਮਿਨੇਟਰ ਵਾਲੇ ਅੰਸ਼ ਵਿੱਚ ਬਦਲੋ।
\frac{1}{4}-5|\frac{1-2}{4}|
ਕਿਉਂਕਿ \frac{1}{4} ਅਤੇ \frac{2}{4} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{1}{4}-5|-\frac{1}{4}|
-1 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 1 ਵਿੱਚੋਂ 2 ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{1}{4}-5\times \frac{1}{4}
ਕਿਸੇ ਰਿਅਲ ਨੰਬਰ a ਦੀ ਦੀ ਐਬਸੋਲਿਉਟ ਵੈਲਯੂ a ਹੁੰਦੀ ਹੈ, ਜਦੋਂ a\geq 0, ਜਾਂ -a ਜਦੋਂ a<0 ਹੈ। -\frac{1}{4} ਦੀ ਐਬਸੋਲਿਉਟ ਵੈਲਯੂ \frac{1}{4} ਹੈ।
\frac{1}{4}-\frac{5}{4}
\frac{5}{4} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 5 ਅਤੇ \frac{1}{4} ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{1-5}{4}
ਕਿਉਂਕਿ \frac{1}{4} ਅਤੇ \frac{5}{4} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{-4}{4}
-4 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 1 ਵਿੱਚੋਂ 5 ਨੂੰ ਘਟਾ ਦਿਓ।
-1
-4 ਨੂੰ 4 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -1 ਨਿਕਲੇ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}