ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
y ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

y^{2}-15y+54=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 54 ਜੋੜੋ।
a+b=-15 ab=54
ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, y^{2}+\left(a+b\right)y+ab=\left(y+a\right)\left(y+b\right) ਸੂਤਰ ਦੀ ਵਰਤੋਂ ਕਰਕੇ y^{2}-15y+54 ਦਾ ਫੈਕਟਰ ਬਣਾਓ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
-1,-54 -2,-27 -3,-18 -6,-9
ਕਿਉਂਕਿ ab ਪਾਜ਼ੇਟਿਵ ਹੈ, a ਅਤੇ b ਦਾ ਸਮਾਨ ਚਿੰਨ੍ਹ ਹੁੰਦਾ ਹੈ। ਕਿਉਂਕਿ a+b ਨੈਗੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੋਵੇਂ ਪਾਜ਼ੇਟਿਵ ਹੁੰਦੇ ਹਨ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ 54 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
-1-54=-55 -2-27=-29 -3-18=-21 -6-9=-15
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
a=-9 b=-6
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ -15 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(y-9\right)\left(y-6\right)
ਹਾਸਲ ਕੀਤੀਆਂ ਵੈਲਯੂਜ਼ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੈਕਟਰ ਵਾਲੀ ਅਭਿਵਿਅਕਤੀ \left(y+a\right)\left(y+b\right) ਨੂੰ ਦੁਬਾਰਾ ਲਿਖੋ।
y=9 y=6
ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਲਈ, y-9=0 ਅਤੇ y-6=0 ਨੂੰ ਹੱਲ ਕਰੋ।
y^{2}-15y+54=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 54 ਜੋੜੋ।
a+b=-15 ab=1\times 54=54
ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, ਸਮੂਹ ਬਣਾ ਕੇ ਖੱਬੇ ਪਾਸੇ ਦਾ ਫੈਕਟਰ ਕੱਢੋ। ਪਹਿਲਾਂ, ਖੱਬੇ ਪਾਸੇ ਵਾਲੇ ਨੂੰ y^{2}+ay+by+54 ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
-1,-54 -2,-27 -3,-18 -6,-9
ਕਿਉਂਕਿ ab ਪਾਜ਼ੇਟਿਵ ਹੈ, a ਅਤੇ b ਦਾ ਸਮਾਨ ਚਿੰਨ੍ਹ ਹੁੰਦਾ ਹੈ। ਕਿਉਂਕਿ a+b ਨੈਗੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੋਵੇਂ ਪਾਜ਼ੇਟਿਵ ਹੁੰਦੇ ਹਨ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ 54 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
-1-54=-55 -2-27=-29 -3-18=-21 -6-9=-15
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
a=-9 b=-6
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ -15 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(y^{2}-9y\right)+\left(-6y+54\right)
y^{2}-15y+54 ਨੂੰ \left(y^{2}-9y\right)+\left(-6y+54\right) ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
y\left(y-9\right)-6\left(y-9\right)
ਪਹਿਲੇ ਸਮੂਹ ਵਿੱਚ y ਦਾ ਅਤੇ ਦੂਜੇ ਵਿੱਚ -6 ਦਾ ਫੈਕਟਰ ਬਣਾਓ।
\left(y-9\right)\left(y-6\right)
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੌਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੋਮਨ ਟਰਮ y-9 ਦਾ ਫੈਕਟਰ ਕੱਢੋ।
y=9 y=6
ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਲਈ, y-9=0 ਅਤੇ y-6=0 ਨੂੰ ਹੱਲ ਕਰੋ।
y^{2}-15y=-54
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
y^{2}-15y-\left(-54\right)=-54-\left(-54\right)
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 54 ਨੂੰ ਜੋੜੋ।
y^{2}-15y-\left(-54\right)=0
-54 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
y^{2}-15y+54=0
0 ਵਿੱਚੋਂ -54 ਨੂੰ ਘਟਾਓ।
y=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\times 54}}{2}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 1 ਨੂੰ a ਲਈ, -15 ਨੂੰ b ਲਈ, ਅਤੇ 54 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
y=\frac{-\left(-15\right)±\sqrt{225-4\times 54}}{2}
-15 ਦਾ ਵਰਗ ਕਰੋ।
y=\frac{-\left(-15\right)±\sqrt{225-216}}{2}
-4 ਨੂੰ 54 ਵਾਰ ਗੁਣਾ ਕਰੋ।
y=\frac{-\left(-15\right)±\sqrt{9}}{2}
225 ਨੂੰ -216 ਵਿੱਚ ਜੋੜੋ।
y=\frac{-\left(-15\right)±3}{2}
9 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
y=\frac{15±3}{2}
-15 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 15 ਹੈ।
y=\frac{18}{2}
ਹੁਣ, ਸਮੀਕਰਨ y=\frac{15±3}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 15 ਨੂੰ 3 ਵਿੱਚ ਜੋੜੋ।
y=9
18 ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
y=\frac{12}{2}
ਹੁਣ, ਸਮੀਕਰਨ y=\frac{15±3}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 15 ਵਿੱਚੋਂ 3 ਨੂੰ ਘਟਾਓ।
y=6
12 ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
y=9 y=6
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
y^{2}-15y=-54
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
y^{2}-15y+\left(-\frac{15}{2}\right)^{2}=-54+\left(-\frac{15}{2}\right)^{2}
-15, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -\frac{15}{2} ਨਿਕਲੇ। ਫੇਰ, -\frac{15}{2} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
y^{2}-15y+\frac{225}{4}=-54+\frac{225}{4}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ -\frac{15}{2} ਦਾ ਵਰਗ ਕੱਢੋ।
y^{2}-15y+\frac{225}{4}=\frac{9}{4}
-54 ਨੂੰ \frac{225}{4} ਵਿੱਚ ਜੋੜੋ।
\left(y-\frac{15}{2}\right)^{2}=\frac{9}{4}
ਫੈਕਟਰ y^{2}-15y+\frac{225}{4}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(y-\frac{15}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
y-\frac{15}{2}=\frac{3}{2} y-\frac{15}{2}=-\frac{3}{2}
ਸਪਸ਼ਟ ਕਰੋ।
y=9 y=6
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{15}{2} ਨੂੰ ਜੋੜੋ।