ਮੁਲਾਂਕਣ ਕਰੋ
1
ਫੈਕਟਰ
1
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
y^{2}-\frac{y^{3}-1}{\frac{y\left(y+1\right)}{y+1}+\frac{1}{y+1}}
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। y ਨੂੰ \frac{y+1}{y+1} ਵਾਰ ਗੁਣਾ ਕਰੋ।
y^{2}-\frac{y^{3}-1}{\frac{y\left(y+1\right)+1}{y+1}}
ਕਿਉਂਕਿ \frac{y\left(y+1\right)}{y+1} ਅਤੇ \frac{1}{y+1} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
y^{2}-\frac{y^{3}-1}{\frac{y^{2}+y+1}{y+1}}
y\left(y+1\right)+1 ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
y^{2}-\frac{\left(y^{3}-1\right)\left(y+1\right)}{y^{2}+y+1}
y^{3}-1 ਨੂੰ \frac{y^{2}+y+1}{y+1} ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ y^{3}-1ਨੂੰ \frac{y^{2}+y+1}{y+1} ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
y^{2}-\frac{\left(y-1\right)\left(y+1\right)\left(y^{2}+y+1\right)}{y^{2}+y+1}
\frac{\left(y^{3}-1\right)\left(y+1\right)}{y^{2}+y+1} ਵਿੱਚ ਪਹਿਲਾਂ ਹੀ ਫੈਕਟਰ ਨਾ ਕੀਤੇ ਏਕਸਪ੍ਰੈਸ਼ਨਾਂ ਨੂੰ ਫੈਕਟਰ ਕਰੋ।
y^{2}-\left(y-1\right)\left(y+1\right)
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਦੋਹਾਂ ਵਿੱਚ y^{2}+y+1 ਨੂੰ ਰੱਦ ਕਰੋ।
y^{2}-\left(y^{2}-1\right)
ਏਕਸਪ੍ਰੈਸ਼ਨ ਨੂੰ ਫੈਲਾਓ।
y^{2}-y^{2}+1
y^{2}-1 ਦਾ ਵਿਪਰੀਤ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਹਰ ਟਰਮ ਦੇ ਵਿਪਰੀਤ ਦਾ ਪਤਾ ਲਗਾਓ।
1
0 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ y^{2} ਅਤੇ -y^{2} ਨੂੰ ਮਿਲਾਓ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}