x ਲਈ ਹਲ ਕਰੋ
x=\frac{\sqrt{41}-3}{8}\approx 0.42539053
x=\frac{-\sqrt{41}-3}{8}\approx -1.17539053
ਗ੍ਰਾਫ
ਕੁਇਜ਼
Quadratic Equation
5 ਪ੍ਰਸ਼ਨ ਇਸ ਵਰਗੇ ਹਨ:
{ x }^{ 2 } -x \times 2x+1- { x }^{ 2 } =2 { x }^{ 2 } +4x-x-1
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
x^{2}-x^{2}\times 2+1-x^{2}=2x^{2}+4x-x-1
x^{2} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x ਅਤੇ x ਨੂੰ ਗੁਣਾ ਕਰੋ।
-x^{2}+1-x^{2}=2x^{2}+4x-x-1
-x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x^{2} ਅਤੇ -x^{2}\times 2 ਨੂੰ ਮਿਲਾਓ।
-2x^{2}+1=2x^{2}+4x-x-1
-2x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -x^{2} ਅਤੇ -x^{2} ਨੂੰ ਮਿਲਾਓ।
-2x^{2}+1=2x^{2}+3x-1
3x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4x ਅਤੇ -x ਨੂੰ ਮਿਲਾਓ।
-2x^{2}+1-2x^{2}=3x-1
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 2x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
-4x^{2}+1=3x-1
-4x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -2x^{2} ਅਤੇ -2x^{2} ਨੂੰ ਮਿਲਾਓ।
-4x^{2}+1-3x=-1
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 3x ਨੂੰ ਘਟਾ ਦਿਓ।
-4x^{2}+1-3x+1=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 1 ਜੋੜੋ।
-4x^{2}+2-3x=0
2 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 1 ਅਤੇ 1 ਨੂੰ ਜੋੜੋ।
-4x^{2}-3x+2=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-4\right)\times 2}}{2\left(-4\right)}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ -4 ਨੂੰ a ਲਈ, -3 ਨੂੰ b ਲਈ, ਅਤੇ 2 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-4\right)\times 2}}{2\left(-4\right)}
-3 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-\left(-3\right)±\sqrt{9+16\times 2}}{2\left(-4\right)}
-4 ਨੂੰ -4 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-3\right)±\sqrt{9+32}}{2\left(-4\right)}
16 ਨੂੰ 2 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-3\right)±\sqrt{41}}{2\left(-4\right)}
9 ਨੂੰ 32 ਵਿੱਚ ਜੋੜੋ।
x=\frac{3±\sqrt{41}}{2\left(-4\right)}
-3 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 3 ਹੈ।
x=\frac{3±\sqrt{41}}{-8}
2 ਨੂੰ -4 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{\sqrt{41}+3}{-8}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{3±\sqrt{41}}{-8} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 3 ਨੂੰ \sqrt{41} ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\sqrt{41}-3}{8}
3+\sqrt{41} ਨੂੰ -8 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{3-\sqrt{41}}{-8}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{3±\sqrt{41}}{-8} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 3 ਵਿੱਚੋਂ \sqrt{41} ਨੂੰ ਘਟਾਓ।
x=\frac{\sqrt{41}-3}{8}
3-\sqrt{41} ਨੂੰ -8 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{-\sqrt{41}-3}{8} x=\frac{\sqrt{41}-3}{8}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
x^{2}-x^{2}\times 2+1-x^{2}=2x^{2}+4x-x-1
x^{2} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x ਅਤੇ x ਨੂੰ ਗੁਣਾ ਕਰੋ।
-x^{2}+1-x^{2}=2x^{2}+4x-x-1
-x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x^{2} ਅਤੇ -x^{2}\times 2 ਨੂੰ ਮਿਲਾਓ।
-2x^{2}+1=2x^{2}+4x-x-1
-2x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -x^{2} ਅਤੇ -x^{2} ਨੂੰ ਮਿਲਾਓ।
-2x^{2}+1=2x^{2}+3x-1
3x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4x ਅਤੇ -x ਨੂੰ ਮਿਲਾਓ।
-2x^{2}+1-2x^{2}=3x-1
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 2x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
-4x^{2}+1=3x-1
-4x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -2x^{2} ਅਤੇ -2x^{2} ਨੂੰ ਮਿਲਾਓ।
-4x^{2}+1-3x=-1
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 3x ਨੂੰ ਘਟਾ ਦਿਓ।
-4x^{2}-3x=-1-1
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 1 ਨੂੰ ਘਟਾ ਦਿਓ।
-4x^{2}-3x=-2
-2 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -1 ਵਿੱਚੋਂ 1 ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{-4x^{2}-3x}{-4}=-\frac{2}{-4}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -4 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\left(-\frac{3}{-4}\right)x=-\frac{2}{-4}
-4 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -4 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}+\frac{3}{4}x=-\frac{2}{-4}
-3 ਨੂੰ -4 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}+\frac{3}{4}x=\frac{1}{2}
2 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{-2}{-4} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x^{2}+\frac{3}{4}x+\left(\frac{3}{8}\right)^{2}=\frac{1}{2}+\left(\frac{3}{8}\right)^{2}
\frac{3}{4}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ \frac{3}{8} ਨਿਕਲੇ। ਫੇਰ, \frac{3}{8} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}+\frac{3}{4}x+\frac{9}{64}=\frac{1}{2}+\frac{9}{64}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ \frac{3}{8} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}+\frac{3}{4}x+\frac{9}{64}=\frac{41}{64}
ਸਾਂਝਾ ਡਿਨੋਮੀਨੇਟਰ(ਹੇਠਲੀ ਸੰਖਿਆ) ਲੱਭ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ(ਉੱਤਲੀ ਸੰਖਿਆ) ਨੂੰ ਜੋੜ ਕੇ \frac{1}{2} ਨੂੰ \frac{9}{64} ਵਿੱਚ ਜੋੜੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
\left(x+\frac{3}{8}\right)^{2}=\frac{41}{64}
ਫੈਕਟਰ x^{2}+\frac{3}{4}x+\frac{9}{64}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x+\frac{3}{8}\right)^{2}}=\sqrt{\frac{41}{64}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x+\frac{3}{8}=\frac{\sqrt{41}}{8} x+\frac{3}{8}=-\frac{\sqrt{41}}{8}
ਸਪਸ਼ਟ ਕਰੋ।
x=\frac{\sqrt{41}-3}{8} x=\frac{-\sqrt{41}-3}{8}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \frac{3}{8} ਨੂੰ ਘਟਾਓ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}