ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

x^{2}-5x+625=8
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x^{2}-5x+625-8=8-8
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 8 ਨੂੰ ਘਟਾਓ।
x^{2}-5x+625-8=0
8 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
x^{2}-5x+617=0
625 ਵਿੱਚੋਂ 8 ਨੂੰ ਘਟਾਓ।
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 617}}{2}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 1 ਨੂੰ a ਲਈ, -5 ਨੂੰ b ਲਈ, ਅਤੇ 617 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-\left(-5\right)±\sqrt{25-4\times 617}}{2}
-5 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-\left(-5\right)±\sqrt{25-2468}}{2}
-4 ਨੂੰ 617 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-5\right)±\sqrt{-2443}}{2}
25 ਨੂੰ -2468 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\left(-5\right)±\sqrt{2443}i}{2}
-2443 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{5±\sqrt{2443}i}{2}
-5 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 5 ਹੈ।
x=\frac{5+\sqrt{2443}i}{2}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{5±\sqrt{2443}i}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 5 ਨੂੰ i\sqrt{2443} ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\sqrt{2443}i+5}{2}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{5±\sqrt{2443}i}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 5 ਵਿੱਚੋਂ i\sqrt{2443} ਨੂੰ ਘਟਾਓ।
x=\frac{5+\sqrt{2443}i}{2} x=\frac{-\sqrt{2443}i+5}{2}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
x^{2}-5x+625=8
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
x^{2}-5x+625-625=8-625
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 625 ਨੂੰ ਘਟਾਓ।
x^{2}-5x=8-625
625 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
x^{2}-5x=-617
8 ਵਿੱਚੋਂ 625 ਨੂੰ ਘਟਾਓ।
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=-617+\left(-\frac{5}{2}\right)^{2}
-5, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -\frac{5}{2} ਨਿਕਲੇ। ਫੇਰ, -\frac{5}{2} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}-5x+\frac{25}{4}=-617+\frac{25}{4}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ -\frac{5}{2} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}-5x+\frac{25}{4}=-\frac{2443}{4}
-617 ਨੂੰ \frac{25}{4} ਵਿੱਚ ਜੋੜੋ।
\left(x-\frac{5}{2}\right)^{2}=-\frac{2443}{4}
ਫੈਕਟਰ x^{2}-5x+\frac{25}{4}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{-\frac{2443}{4}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x-\frac{5}{2}=\frac{\sqrt{2443}i}{2} x-\frac{5}{2}=-\frac{\sqrt{2443}i}{2}
ਸਪਸ਼ਟ ਕਰੋ।
x=\frac{5+\sqrt{2443}i}{2} x=\frac{-\sqrt{2443}i+5}{2}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{5}{2} ਨੂੰ ਜੋੜੋ।