x ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
x=\frac{31+\sqrt{383}i}{6}\approx 5.166666667+3.261730965i
x=\frac{-\sqrt{383}i+31}{6}\approx 5.166666667-3.261730965i
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
2x^{2}-8x+16+x^{2}-28x+200=-x-4x+104
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 2 ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
3x^{2}-8x+16-28x+200=-x-4x+104
3x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2x^{2} ਅਤੇ x^{2} ਨੂੰ ਮਿਲਾਓ।
3x^{2}-36x+16+200=-x-4x+104
-36x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -8x ਅਤੇ -28x ਨੂੰ ਮਿਲਾਓ।
3x^{2}-36x+216=-x-4x+104
216 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 16 ਅਤੇ 200 ਨੂੰ ਜੋੜੋ।
3x^{2}-36x+216+x=-4x+104
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ x ਜੋੜੋ।
3x^{2}-35x+216=-4x+104
-35x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -36x ਅਤੇ x ਨੂੰ ਮਿਲਾਓ।
3x^{2}-35x+216+4x=104
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 4x ਜੋੜੋ।
3x^{2}-31x+216=104
-31x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -35x ਅਤੇ 4x ਨੂੰ ਮਿਲਾਓ।
3x^{2}-31x+216-104=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 104 ਨੂੰ ਘਟਾ ਦਿਓ।
3x^{2}-31x+112=0
112 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 216 ਵਿੱਚੋਂ 104 ਨੂੰ ਘਟਾ ਦਿਓ।
x=\frac{-\left(-31\right)±\sqrt{\left(-31\right)^{2}-4\times 3\times 112}}{2\times 3}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 3 ਨੂੰ a ਲਈ, -31 ਨੂੰ b ਲਈ, ਅਤੇ 112 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-\left(-31\right)±\sqrt{961-4\times 3\times 112}}{2\times 3}
-31 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-\left(-31\right)±\sqrt{961-12\times 112}}{2\times 3}
-4 ਨੂੰ 3 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-31\right)±\sqrt{961-1344}}{2\times 3}
-12 ਨੂੰ 112 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-31\right)±\sqrt{-383}}{2\times 3}
961 ਨੂੰ -1344 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\left(-31\right)±\sqrt{383}i}{2\times 3}
-383 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{31±\sqrt{383}i}{2\times 3}
-31 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 31 ਹੈ।
x=\frac{31±\sqrt{383}i}{6}
2 ਨੂੰ 3 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{31+\sqrt{383}i}{6}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{31±\sqrt{383}i}{6} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 31 ਨੂੰ i\sqrt{383} ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\sqrt{383}i+31}{6}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{31±\sqrt{383}i}{6} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 31 ਵਿੱਚੋਂ i\sqrt{383} ਨੂੰ ਘਟਾਓ।
x=\frac{31+\sqrt{383}i}{6} x=\frac{-\sqrt{383}i+31}{6}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
2x^{2}-8x+16+x^{2}-28x+200=-x-4x+104
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 2 ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
3x^{2}-8x+16-28x+200=-x-4x+104
3x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2x^{2} ਅਤੇ x^{2} ਨੂੰ ਮਿਲਾਓ।
3x^{2}-36x+16+200=-x-4x+104
-36x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -8x ਅਤੇ -28x ਨੂੰ ਮਿਲਾਓ।
3x^{2}-36x+216=-x-4x+104
216 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 16 ਅਤੇ 200 ਨੂੰ ਜੋੜੋ।
3x^{2}-36x+216+x=-4x+104
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ x ਜੋੜੋ।
3x^{2}-35x+216=-4x+104
-35x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -36x ਅਤੇ x ਨੂੰ ਮਿਲਾਓ।
3x^{2}-35x+216+4x=104
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 4x ਜੋੜੋ।
3x^{2}-31x+216=104
-31x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -35x ਅਤੇ 4x ਨੂੰ ਮਿਲਾਓ।
3x^{2}-31x=104-216
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 216 ਨੂੰ ਘਟਾ ਦਿਓ।
3x^{2}-31x=-112
-112 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 104 ਵਿੱਚੋਂ 216 ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{3x^{2}-31x}{3}=-\frac{112}{3}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 3 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}-\frac{31}{3}x=-\frac{112}{3}
3 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 3 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}-\frac{31}{3}x+\left(-\frac{31}{6}\right)^{2}=-\frac{112}{3}+\left(-\frac{31}{6}\right)^{2}
-\frac{31}{3}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -\frac{31}{6} ਨਿਕਲੇ। ਫੇਰ, -\frac{31}{6} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}-\frac{31}{3}x+\frac{961}{36}=-\frac{112}{3}+\frac{961}{36}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ -\frac{31}{6} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}-\frac{31}{3}x+\frac{961}{36}=-\frac{383}{36}
ਸਾਂਝਾ ਡਿਨੋਮੀਨੇਟਰ(ਹੇਠਲੀ ਸੰਖਿਆ) ਲੱਭ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ(ਉੱਤਲੀ ਸੰਖਿਆ) ਨੂੰ ਜੋੜ ਕੇ -\frac{112}{3} ਨੂੰ \frac{961}{36} ਵਿੱਚ ਜੋੜੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
\left(x-\frac{31}{6}\right)^{2}=-\frac{383}{36}
ਫੈਕਟਰ x^{2}-\frac{31}{3}x+\frac{961}{36}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x-\frac{31}{6}\right)^{2}}=\sqrt{-\frac{383}{36}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x-\frac{31}{6}=\frac{\sqrt{383}i}{6} x-\frac{31}{6}=-\frac{\sqrt{383}i}{6}
ਸਪਸ਼ਟ ਕਰੋ।
x=\frac{31+\sqrt{383}i}{6} x=\frac{-\sqrt{383}i+31}{6}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{31}{6} ਨੂੰ ਜੋੜੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}