ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

x^{2}-3x+1=0
ਅਸਮਾਨਤਾ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, ਖੱਬੇ ਪਾਸੇ ਦੇ ਫੈਕਟਰ ਬਣਾਓ। ਦੋ-ਘਾਤੀ ਪੋਲੀਨੋਮੀਅਲ ਦੇ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੈਕਟਰ ਬਣਾਏ ਜਾ ਸਕਦੇ ਹਨ, ਜਿੱਥੇ x_{1} ਅਤੇ x_{2} ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ ax^{2}+bx+c=0 ਦੇ ਹੱਲ ਹੁੰਦੇ ਹਨ।
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 1\times 1}}{2}
ax^{2}+bx+c=0 ਫਾਰਮ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਦੋ-ਘਾਤੀ ਸੂਤਰ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਦੋ-ਘਾਤੀ ਸੂਤਰ ਵਿੱਚ 1 ਨੂੰ a ਦੇ ਨਾਲ, -3 ਨੂੰ b ਦੇ ਨਾਲ, ਅਤੇ 1 ਨੂੰ c ਦੇ ਨਾਲ ਬਦਲ ਦਿਓ।
x=\frac{3±\sqrt{5}}{2}
ਗਣਨਾਵਾਂ ਕਰੋ।
x=\frac{\sqrt{5}+3}{2} x=\frac{3-\sqrt{5}}{2}
x=\frac{3±\sqrt{5}}{2} ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰੋ, ਜਦੋਂ ± ਪਲੱਸ ਅਤੇ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ।
\left(x-\frac{\sqrt{5}+3}{2}\right)\left(x-\frac{3-\sqrt{5}}{2}\right)<0
ਪ੍ਰਾਪਤ ਕੀਤੇ ਹੱਲਾਂ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਅਸਮਾਨਤਾ ਨੂੰ ਦੁਬਾਰਾ ਲਿਖੋ।
x-\frac{\sqrt{5}+3}{2}>0 x-\frac{3-\sqrt{5}}{2}<0
ਗੁਣਜ ਨੂੰ ਨੇਗੇਟਿਵ ਹੋਣ ਲਈ, x-\frac{\sqrt{5}+3}{2} ਅਤੇ x-\frac{3-\sqrt{5}}{2} ਵਿਰੋਧੀ ਚਿੰਨ੍ਹ ਵਾਲੇ ਹੋਣੇ ਚਾਹੀਦੇ ਹਨ। ਜਦੋਂ x-\frac{\sqrt{5}+3}{2} ਪੋਜ਼ੇਟਿਵ ਅਤੇ x-\frac{3-\sqrt{5}}{2} ਨੇਗੇਟਿਵ ਹੋਵੇ ਤਾਂ ਮਾਮਲੇ 'ਤੇ ਵਿਚਾਰ ਕਰੋ।
x\in \emptyset
ਇਹ ਕਿਸੇ ਵੀ x ਲਈ ਗ਼ਲਤ ਹੈ।
x-\frac{3-\sqrt{5}}{2}>0 x-\frac{\sqrt{5}+3}{2}<0
ਜਦੋਂ x-\frac{3-\sqrt{5}}{2} ਪੋਜ਼ੇਟਿਵ ਅਤੇ x-\frac{\sqrt{5}+3}{2} ਨੇਗੇਟਿਵ ਹੋਵੇ ਤਾਂ ਮਾਮਲੇ 'ਤੇ ਵਿਚਾਰ ਕਰੋ।
x\in \left(\frac{3-\sqrt{5}}{2},\frac{\sqrt{5}+3}{2}\right)
ਦੋਵੇਂ ਅਸਮਾਨਤਾਵਾਂ ਨੂੰ ਸੰਤੁਸ਼ਟ ਕਰ ਰਿਹਾ ਹੱਲ x\in \left(\frac{3-\sqrt{5}}{2},\frac{\sqrt{5}+3}{2}\right) ਹੁੰਦਾ ਹੈ।
x\in \left(\frac{3-\sqrt{5}}{2},\frac{\sqrt{5}+3}{2}\right)
ਅੰਤਿਮ ਹੱਲ ਹਾਸਲ ਕੀਤੇ ਹੱਲਾਂ ਦਾ ਜੋੜ ਹੁੰਦਾ ਹੈ।