ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
ਫੈਕਟਰ
Tick mark Image
ਮੁਲਾਂਕਣ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

a+b=-14 ab=1\times 49=49
ਅਭਿਵਿਅਕਤੀ ਦਾ ਫੈਕਟਰ ਸਮੂਹ ਬਣਾ ਕੇ ਕੱਢੋ। ਪਹਿਲੇ, ਅਭਿਵਿਅਕਤੀ ਨੂੰ x^{2}+ax+bx+49 ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
-1,-49 -7,-7
ਕਿਉਂਕਿ ab ਪਾਜ਼ੇਟਿਵ ਹੈ, a ਅਤੇ b ਦਾ ਸਮਾਨ ਚਿੰਨ੍ਹ ਹੁੰਦਾ ਹੈ। ਕਿਉਂਕਿ a+b ਨੈਗੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੋਵੇਂ ਪਾਜ਼ੇਟਿਵ ਹੁੰਦੇ ਹਨ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ 49 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
-1-49=-50 -7-7=-14
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
a=-7 b=-7
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ -14 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(x^{2}-7x\right)+\left(-7x+49\right)
x^{2}-14x+49 ਨੂੰ \left(x^{2}-7x\right)+\left(-7x+49\right) ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
x\left(x-7\right)-7\left(x-7\right)
ਪਹਿਲੇ ਸਮੂਹ ਵਿੱਚ x ਦਾ ਅਤੇ ਦੂਜੇ ਵਿੱਚ -7 ਦਾ ਫੈਕਟਰ ਬਣਾਓ।
\left(x-7\right)\left(x-7\right)
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੌਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੋਮਨ ਟਰਮ x-7 ਦਾ ਫੈਕਟਰ ਕੱਢੋ।
\left(x-7\right)^{2}
ਬਾਈਨੋਮਿਅਲ (ਦੋ-ਪਦੀ) ਵਰਗ ਦੇ ਤੌਰ ਤੇ ਦੁਬਾਰਾ-ਲਿਖੋ।
factor(x^{2}-14x+49)
ਇਸ ਟ੍ਰਾਈਨੋਮਿਅਲ ਕੋਲ, ਸ਼ਾਇਦ ਕੋਮਨ ਫੈਕਟਰ ਦੁਆਰਾ ਗੁਣਾ ਕੀਤਾ ਗਿਆ, ਟ੍ਰਾਈਨੋਮਿਅਲ ਵਰਗ ਦਾ ਰੂਪ ਹੁੰਦਾ ਹੈ। ਲੀਡਿੰਗ ਅਤੇ ਟ੍ਰੇਲਿੰਗ ਸੰਖਿਆਵਾਂ ਦੇ ਵਰਗ ਮੂਲ ਨੂੰ ਕੱਢ ਕੇ ਟ੍ਰਾਈਨੋਮਿਅਲ ਵਰਗ ਦਾ ਫੈਕਟਰ ਕੱਢਿਆ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{49}=7
ਟ੍ਰੇਲਿੰਗ ਟਰਮ 49 ਦਾ ਵਰਗ ਮੂਲ ਕੱਢੋ।
\left(x-7\right)^{2}
ਟ੍ਰਾਈਨੋਮਿਅਲ ਵਰਗ ਬਾਈਨੋਮਿਅਲ ਦਾ ਵਰਗ ਹੁੰਦਾ ਹੈ ਜੋ ਲੀਡਿਗ ਅਤੇ ਟ੍ਰੇਲਿੰਗ ਸੰਖਿਆਵਾਂ ਦੇ ਵਰਗ ਮੂਲਾਂ ਦਾ ਜੋੜ ਜਾਂ ਅੰਤਰ ਹੁੰਦਾ ਹੈ, ਜਿਸ ਦਾ ਚਿੰਨ੍ਹ ਟ੍ਰਾਈਨੋਮਿਅਲ ਵਰਗ ਦੀ ਵਿੱਚਕਾਰਲੀ ਸੰਖਿਆ ਦੇ ਚਿੰਨ੍ਹ ਦੁਆਰਾ ਨਿਰਧਾਰਤ ਹੁੰਦਾ ਹੈ।
x^{2}-14x+49=0
ਦੋ-ਘਾਤੀ ਪੋਲੀਨੋਮੀਅਲ ਦੇ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੈਕਟਰ ਬਣਾਏ ਜਾ ਸਕਦੇ ਹਨ, ਜਿੱਥੇ x_{1} ਅਤੇ x_{2} ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ ax^{2}+bx+c=0 ਦੇ ਹੱਲ ਹੁੰਦੇ ਹਨ।
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 49}}{2}
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-\left(-14\right)±\sqrt{196-4\times 49}}{2}
-14 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-\left(-14\right)±\sqrt{196-196}}{2}
-4 ਨੂੰ 49 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-14\right)±\sqrt{0}}{2}
196 ਨੂੰ -196 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\left(-14\right)±0}{2}
0 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{14±0}{2}
-14 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 14 ਹੈ।
x^{2}-14x+49=\left(x-7\right)\left(x-7\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਮੂਲ ਵਿਅੰਜਕ ਦੇ ਗੁਣਨ ਖੰਡ ਬਣਾਓ। x_{1} ਲਈ 7ਅਤੇ x_{2} ਲਈ 7 ਬਦਲ ਹੈ।