x ਲਈ ਹਲ ਕਰੋ
x = \frac{3 \sqrt{1266} - 3}{5} \approx 20.74853625
x=\frac{-3\sqrt{1266}-3}{5}\approx -21.94853625
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
x^{2}\times 10+36=4590-12x
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 6 ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
x^{2}\times 10+36-4590=-12x
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 4590 ਨੂੰ ਘਟਾ ਦਿਓ।
x^{2}\times 10-4554=-12x
-4554 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 36 ਵਿੱਚੋਂ 4590 ਨੂੰ ਘਟਾ ਦਿਓ।
x^{2}\times 10-4554+12x=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 12x ਜੋੜੋ।
10x^{2}+12x-4554=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-12±\sqrt{12^{2}-4\times 10\left(-4554\right)}}{2\times 10}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 10 ਨੂੰ a ਲਈ, 12 ਨੂੰ b ਲਈ, ਅਤੇ -4554 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-12±\sqrt{144-4\times 10\left(-4554\right)}}{2\times 10}
12 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-12±\sqrt{144-40\left(-4554\right)}}{2\times 10}
-4 ਨੂੰ 10 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-12±\sqrt{144+182160}}{2\times 10}
-40 ਨੂੰ -4554 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-12±\sqrt{182304}}{2\times 10}
144 ਨੂੰ 182160 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-12±12\sqrt{1266}}{2\times 10}
182304 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{-12±12\sqrt{1266}}{20}
2 ਨੂੰ 10 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{12\sqrt{1266}-12}{20}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-12±12\sqrt{1266}}{20} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -12 ਨੂੰ 12\sqrt{1266} ਵਿੱਚ ਜੋੜੋ।
x=\frac{3\sqrt{1266}-3}{5}
-12+12\sqrt{1266} ਨੂੰ 20 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{-12\sqrt{1266}-12}{20}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-12±12\sqrt{1266}}{20} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -12 ਵਿੱਚੋਂ 12\sqrt{1266} ਨੂੰ ਘਟਾਓ।
x=\frac{-3\sqrt{1266}-3}{5}
-12-12\sqrt{1266} ਨੂੰ 20 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{3\sqrt{1266}-3}{5} x=\frac{-3\sqrt{1266}-3}{5}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
x^{2}\times 10+36=4590-12x
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 6 ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
x^{2}\times 10+36+12x=4590
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 12x ਜੋੜੋ।
x^{2}\times 10+12x=4590-36
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 36 ਨੂੰ ਘਟਾ ਦਿਓ।
x^{2}\times 10+12x=4554
4554 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4590 ਵਿੱਚੋਂ 36 ਨੂੰ ਘਟਾ ਦਿਓ।
10x^{2}+12x=4554
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
\frac{10x^{2}+12x}{10}=\frac{4554}{10}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 10 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\frac{12}{10}x=\frac{4554}{10}
10 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 10 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}+\frac{6}{5}x=\frac{4554}{10}
2 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{12}{10} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x^{2}+\frac{6}{5}x=\frac{2277}{5}
2 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{4554}{10} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x^{2}+\frac{6}{5}x+\left(\frac{3}{5}\right)^{2}=\frac{2277}{5}+\left(\frac{3}{5}\right)^{2}
\frac{6}{5}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ \frac{3}{5} ਨਿਕਲੇ। ਫੇਰ, \frac{3}{5} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}+\frac{6}{5}x+\frac{9}{25}=\frac{2277}{5}+\frac{9}{25}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ \frac{3}{5} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}+\frac{6}{5}x+\frac{9}{25}=\frac{11394}{25}
ਸਾਂਝਾ ਡਿਨੋਮੀਨੇਟਰ(ਹੇਠਲੀ ਸੰਖਿਆ) ਲੱਭ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ(ਉੱਤਲੀ ਸੰਖਿਆ) ਨੂੰ ਜੋੜ ਕੇ \frac{2277}{5} ਨੂੰ \frac{9}{25} ਵਿੱਚ ਜੋੜੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
\left(x+\frac{3}{5}\right)^{2}=\frac{11394}{25}
ਫੈਕਟਰ x^{2}+\frac{6}{5}x+\frac{9}{25}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x+\frac{3}{5}\right)^{2}}=\sqrt{\frac{11394}{25}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x+\frac{3}{5}=\frac{3\sqrt{1266}}{5} x+\frac{3}{5}=-\frac{3\sqrt{1266}}{5}
ਸਪਸ਼ਟ ਕਰੋ।
x=\frac{3\sqrt{1266}-3}{5} x=\frac{-3\sqrt{1266}-3}{5}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \frac{3}{5} ਨੂੰ ਘਟਾਓ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}