ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
m ਲਈ ਹਲ ਕਰੋ
Tick mark Image

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

m^{2}-\left(3m^{2}-5m+2\right)>0
m-1 ਨੂੰ 3m-2 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
m^{2}-3m^{2}+5m-2>0
3m^{2}-5m+2 ਦਾ ਵਿਪਰੀਤ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਹਰ ਟਰਮ ਦੇ ਵਿਪਰੀਤ ਦਾ ਪਤਾ ਲਗਾਓ।
-2m^{2}+5m-2>0
-2m^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ m^{2} ਅਤੇ -3m^{2} ਨੂੰ ਮਿਲਾਓ।
2m^{2}-5m+2<0
ਅਸਮਾਨਤਾ ਨੂੰ -1 ਨਾਲ ਗੁਣਾ ਕਰੋ, ਤਾਂ ਜੋ ਉੱਚਤਮ ਪਾਵਰ ਦਾ ਕੋਐਫੀਸ਼ੀਐਂਟ -2m^{2}+5m-2 ਪੋਜ਼ੇਟਿਵ ਵਿੱਚ ਹੋਵੇ। ਕਿਉਂਕਿ -1 ਰਿਣਾਤਮਕ ਹੈ, ਇਸ ਲਈ ਅਸਮਾਨਤਾ ਦਿਸ਼ਾ ਬਦਲ ਜਾਂਦੀ ਹੈ।
2m^{2}-5m+2=0
ਅਸਮਾਨਤਾ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, ਖੱਬੇ ਪਾਸੇ ਦੇ ਫੈਕਟਰ ਬਣਾਓ। ਦੋ-ਘਾਤੀ ਪੋਲੀਨੋਮੀਅਲ ਦੇ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੈਕਟਰ ਬਣਾਏ ਜਾ ਸਕਦੇ ਹਨ, ਜਿੱਥੇ x_{1} ਅਤੇ x_{2} ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ ax^{2}+bx+c=0 ਦੇ ਹੱਲ ਹੁੰਦੇ ਹਨ।
m=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 2\times 2}}{2\times 2}
ax^{2}+bx+c=0 ਫਾਰਮ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਦੋ-ਘਾਤੀ ਸੂਤਰ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਦੋ-ਘਾਤੀ ਸੂਤਰ ਵਿੱਚ 2 ਨੂੰ a ਦੇ ਨਾਲ, -5 ਨੂੰ b ਦੇ ਨਾਲ, ਅਤੇ 2 ਨੂੰ c ਦੇ ਨਾਲ ਬਦਲ ਦਿਓ।
m=\frac{5±3}{4}
ਗਣਨਾਵਾਂ ਕਰੋ।
m=2 m=\frac{1}{2}
m=\frac{5±3}{4} ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰੋ, ਜਦੋਂ ± ਪਲੱਸ ਅਤੇ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ।
2\left(m-2\right)\left(m-\frac{1}{2}\right)<0
ਪ੍ਰਾਪਤ ਕੀਤੇ ਹੱਲਾਂ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਅਸਮਾਨਤਾ ਨੂੰ ਦੁਬਾਰਾ ਲਿਖੋ।
m-2>0 m-\frac{1}{2}<0
ਗੁਣਜ ਨੂੰ ਨੇਗੇਟਿਵ ਹੋਣ ਲਈ, m-2 ਅਤੇ m-\frac{1}{2} ਵਿਰੋਧੀ ਚਿੰਨ੍ਹ ਵਾਲੇ ਹੋਣੇ ਚਾਹੀਦੇ ਹਨ। ਜਦੋਂ m-2 ਪੋਜ਼ੇਟਿਵ ਅਤੇ m-\frac{1}{2} ਨੇਗੇਟਿਵ ਹੋਵੇ ਤਾਂ ਮਾਮਲੇ 'ਤੇ ਵਿਚਾਰ ਕਰੋ।
m\in \emptyset
ਇਹ ਕਿਸੇ ਵੀ m ਲਈ ਗ਼ਲਤ ਹੈ।
m-\frac{1}{2}>0 m-2<0
ਜਦੋਂ m-\frac{1}{2} ਪੋਜ਼ੇਟਿਵ ਅਤੇ m-2 ਨੇਗੇਟਿਵ ਹੋਵੇ ਤਾਂ ਮਾਮਲੇ 'ਤੇ ਵਿਚਾਰ ਕਰੋ।
m\in \left(\frac{1}{2},2\right)
ਦੋਵੇਂ ਅਸਮਾਨਤਾਵਾਂ ਨੂੰ ਸੰਤੁਸ਼ਟ ਕਰ ਰਿਹਾ ਹੱਲ m\in \left(\frac{1}{2},2\right) ਹੁੰਦਾ ਹੈ।
m\in \left(\frac{1}{2},2\right)
ਅੰਤਿਮ ਹੱਲ ਹਾਸਲ ਕੀਤੇ ਹੱਲਾਂ ਦਾ ਜੋੜ ਹੁੰਦਾ ਹੈ।