ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

16-4x\left(5-x\right)=0
4 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 16 ਪ੍ਰਾਪਤ ਕਰੋ।
16-20x+4x^{2}=0
-4x ਨੂੰ 5-x ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
4-5x+x^{2}=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 4 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}-5x+4=0
ਪੋਲੀਨੋਮਿਅਲ ਨੂੰ ਸਟੈਂਡਰਡ ਫਾਰਮ ਵਿੱਚ ਰੱਖਣ ਲਈ ਇਸ ਨੂੰ ਦੁਬਾਰਾ-ਵਿਵਸਥਿਤ ਕਰੋ। ਸੰਖਿਆਵਾਂ ਨੂੰ ਸਭ ਤੋਂ ਵੱਡੀ ਤੋਂ ਸਭ ਤੋਂ ਛੋਟੀ ਪਾਵਰ ਦੀ ਤਰਤੀਬ ਵਿੱਚ ਲਗਾਓ।
a+b=-5 ab=1\times 4=4
ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, ਸਮੂਹ ਬਣਾ ਕੇ ਖੱਬੇ ਪਾਸੇ ਦਾ ਫੈਕਟਰ ਕੱਢੋ। ਪਹਿਲਾਂ, ਖੱਬੇ ਪਾਸੇ ਵਾਲੇ ਨੂੰ x^{2}+ax+bx+4 ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
-1,-4 -2,-2
ਕਿਉਂਕਿ ab ਪਾਜ਼ੇਟਿਵ ਹੈ, a ਅਤੇ b ਦਾ ਸਮਾਨ ਚਿੰਨ੍ਹ ਹੁੰਦਾ ਹੈ। ਕਿਉਂਕਿ a+b ਨੈਗੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੋਵੇਂ ਪਾਜ਼ੇਟਿਵ ਹੁੰਦੇ ਹਨ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ 4 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
-1-4=-5 -2-2=-4
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
a=-4 b=-1
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ -5 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(x^{2}-4x\right)+\left(-x+4\right)
x^{2}-5x+4 ਨੂੰ \left(x^{2}-4x\right)+\left(-x+4\right) ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
x\left(x-4\right)-\left(x-4\right)
ਪਹਿਲੇ ਸਮੂਹ ਵਿੱਚ x ਦਾ ਅਤੇ ਦੂਜੇ ਵਿੱਚ -1 ਦਾ ਫੈਕਟਰ ਬਣਾਓ।
\left(x-4\right)\left(x-1\right)
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੌਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੋਮਨ ਟਰਮ x-4 ਦਾ ਫੈਕਟਰ ਕੱਢੋ।
x=4 x=1
ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਲਈ, x-4=0 ਅਤੇ x-1=0 ਨੂੰ ਹੱਲ ਕਰੋ।
16-4x\left(5-x\right)=0
4 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 16 ਪ੍ਰਾਪਤ ਕਰੋ।
16-20x+4x^{2}=0
-4x ਨੂੰ 5-x ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
4x^{2}-20x+16=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\times 4\times 16}}{2\times 4}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 4 ਨੂੰ a ਲਈ, -20 ਨੂੰ b ਲਈ, ਅਤੇ 16 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-\left(-20\right)±\sqrt{400-4\times 4\times 16}}{2\times 4}
-20 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-\left(-20\right)±\sqrt{400-16\times 16}}{2\times 4}
-4 ਨੂੰ 4 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-20\right)±\sqrt{400-256}}{2\times 4}
-16 ਨੂੰ 16 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-20\right)±\sqrt{144}}{2\times 4}
400 ਨੂੰ -256 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\left(-20\right)±12}{2\times 4}
144 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{20±12}{2\times 4}
-20 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 20 ਹੈ।
x=\frac{20±12}{8}
2 ਨੂੰ 4 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{32}{8}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{20±12}{8} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 20 ਨੂੰ 12 ਵਿੱਚ ਜੋੜੋ।
x=4
32 ਨੂੰ 8 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{8}{8}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{20±12}{8} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 20 ਵਿੱਚੋਂ 12 ਨੂੰ ਘਟਾਓ।
x=1
8 ਨੂੰ 8 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=4 x=1
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
16-4x\left(5-x\right)=0
4 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 16 ਪ੍ਰਾਪਤ ਕਰੋ।
16-20x+4x^{2}=0
-4x ਨੂੰ 5-x ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
-20x+4x^{2}=-16
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 16 ਨੂੰ ਘਟਾ ਦਿਓ। ਸਿਫਰ ਵਿੱਚੋ ਘਟਾਈ ਗਈ ਰਕਮ ਦਾ ਜਵਾਬ ਉਹੀ ਰਕਮ ਹੁੰਦੀ ਹੈ।
4x^{2}-20x=-16
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
\frac{4x^{2}-20x}{4}=-\frac{16}{4}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 4 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\left(-\frac{20}{4}\right)x=-\frac{16}{4}
4 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 4 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}-5x=-\frac{16}{4}
-20 ਨੂੰ 4 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-5x=-4
-16 ਨੂੰ 4 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=-4+\left(-\frac{5}{2}\right)^{2}
-5, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -\frac{5}{2} ਨਿਕਲੇ। ਫੇਰ, -\frac{5}{2} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}-5x+\frac{25}{4}=-4+\frac{25}{4}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ -\frac{5}{2} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}-5x+\frac{25}{4}=\frac{9}{4}
-4 ਨੂੰ \frac{25}{4} ਵਿੱਚ ਜੋੜੋ।
\left(x-\frac{5}{2}\right)^{2}=\frac{9}{4}
ਫੈਕਟਰ x^{2}-5x+\frac{25}{4}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x-\frac{5}{2}=\frac{3}{2} x-\frac{5}{2}=-\frac{3}{2}
ਸਪਸ਼ਟ ਕਰੋ।
x=4 x=1
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{5}{2} ਨੂੰ ਜੋੜੋ।