ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

5^{2}x^{2}-4x-5=0
\left(5x\right)^{2} ਦਾ ਵਿਸਥਾਰ ਕਰੋ।
25x^{2}-4x-5=0
5 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 25 ਪ੍ਰਾਪਤ ਕਰੋ।
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 25\left(-5\right)}}{2\times 25}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 25 ਨੂੰ a ਲਈ, -4 ਨੂੰ b ਲਈ, ਅਤੇ -5 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-\left(-4\right)±\sqrt{16-4\times 25\left(-5\right)}}{2\times 25}
-4 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-\left(-4\right)±\sqrt{16-100\left(-5\right)}}{2\times 25}
-4 ਨੂੰ 25 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-4\right)±\sqrt{16+500}}{2\times 25}
-100 ਨੂੰ -5 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-4\right)±\sqrt{516}}{2\times 25}
16 ਨੂੰ 500 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\left(-4\right)±2\sqrt{129}}{2\times 25}
516 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{4±2\sqrt{129}}{2\times 25}
-4 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 4 ਹੈ।
x=\frac{4±2\sqrt{129}}{50}
2 ਨੂੰ 25 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{2\sqrt{129}+4}{50}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{4±2\sqrt{129}}{50} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 4 ਨੂੰ 2\sqrt{129} ਵਿੱਚ ਜੋੜੋ।
x=\frac{\sqrt{129}+2}{25}
4+2\sqrt{129} ਨੂੰ 50 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{4-2\sqrt{129}}{50}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{4±2\sqrt{129}}{50} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 4 ਵਿੱਚੋਂ 2\sqrt{129} ਨੂੰ ਘਟਾਓ।
x=\frac{2-\sqrt{129}}{25}
4-2\sqrt{129} ਨੂੰ 50 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{\sqrt{129}+2}{25} x=\frac{2-\sqrt{129}}{25}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
5^{2}x^{2}-4x-5=0
\left(5x\right)^{2} ਦਾ ਵਿਸਥਾਰ ਕਰੋ।
25x^{2}-4x-5=0
5 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 25 ਪ੍ਰਾਪਤ ਕਰੋ।
25x^{2}-4x=5
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 5 ਜੋੜੋ। ਸਿਫਰ ਵਿੱਚ ਜੋੜੀ ਗਈ ਰਕਮ ਦਾ ਜਵਾਬ ਉਹੀ ਰਕਮ ਹੁੰਦੀ ਹੈ।
\frac{25x^{2}-4x}{25}=\frac{5}{25}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 25 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}-\frac{4}{25}x=\frac{5}{25}
25 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 25 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}-\frac{4}{25}x=\frac{1}{5}
5 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{5}{25} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x^{2}-\frac{4}{25}x+\left(-\frac{2}{25}\right)^{2}=\frac{1}{5}+\left(-\frac{2}{25}\right)^{2}
-\frac{4}{25}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -\frac{2}{25} ਨਿਕਲੇ। ਫੇਰ, -\frac{2}{25} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}-\frac{4}{25}x+\frac{4}{625}=\frac{1}{5}+\frac{4}{625}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ -\frac{2}{25} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}-\frac{4}{25}x+\frac{4}{625}=\frac{129}{625}
ਸਾਂਝਾ ਡਿਨੋਮੀਨੇਟਰ(ਹੇਠਲੀ ਸੰਖਿਆ) ਲੱਭ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ(ਉੱਤਲੀ ਸੰਖਿਆ) ਨੂੰ ਜੋੜ ਕੇ \frac{1}{5} ਨੂੰ \frac{4}{625} ਵਿੱਚ ਜੋੜੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
\left(x-\frac{2}{25}\right)^{2}=\frac{129}{625}
ਫੈਕਟਰ x^{2}-\frac{4}{25}x+\frac{4}{625}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x-\frac{2}{25}\right)^{2}}=\sqrt{\frac{129}{625}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x-\frac{2}{25}=\frac{\sqrt{129}}{25} x-\frac{2}{25}=-\frac{\sqrt{129}}{25}
ਸਪਸ਼ਟ ਕਰੋ।
x=\frac{\sqrt{129}+2}{25} x=\frac{2-\sqrt{129}}{25}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{2}{25} ਨੂੰ ਜੋੜੋ।