ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

3^{2}x^{2}+17x+10=0
\left(3x\right)^{2} ਦਾ ਵਿਸਥਾਰ ਕਰੋ।
9x^{2}+17x+10=0
3 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 9 ਪ੍ਰਾਪਤ ਕਰੋ।
x=\frac{-17±\sqrt{17^{2}-4\times 9\times 10}}{2\times 9}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 9 ਨੂੰ a ਲਈ, 17 ਨੂੰ b ਲਈ, ਅਤੇ 10 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-17±\sqrt{289-4\times 9\times 10}}{2\times 9}
17 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-17±\sqrt{289-36\times 10}}{2\times 9}
-4 ਨੂੰ 9 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-17±\sqrt{289-360}}{2\times 9}
-36 ਨੂੰ 10 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-17±\sqrt{-71}}{2\times 9}
289 ਨੂੰ -360 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-17±\sqrt{71}i}{2\times 9}
-71 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{-17±\sqrt{71}i}{18}
2 ਨੂੰ 9 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-17+\sqrt{71}i}{18}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-17±\sqrt{71}i}{18} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -17 ਨੂੰ i\sqrt{71} ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\sqrt{71}i-17}{18}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-17±\sqrt{71}i}{18} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -17 ਵਿੱਚੋਂ i\sqrt{71} ਨੂੰ ਘਟਾਓ।
x=\frac{-17+\sqrt{71}i}{18} x=\frac{-\sqrt{71}i-17}{18}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
3^{2}x^{2}+17x+10=0
\left(3x\right)^{2} ਦਾ ਵਿਸਥਾਰ ਕਰੋ।
9x^{2}+17x+10=0
3 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 9 ਪ੍ਰਾਪਤ ਕਰੋ।
9x^{2}+17x=-10
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 10 ਨੂੰ ਘਟਾ ਦਿਓ। ਸਿਫਰ ਵਿੱਚੋ ਘਟਾਈ ਗਈ ਰਕਮ ਦਾ ਜਵਾਬ ਉਹੀ ਰਕਮ ਹੁੰਦੀ ਹੈ।
\frac{9x^{2}+17x}{9}=-\frac{10}{9}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 9 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\frac{17}{9}x=-\frac{10}{9}
9 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 9 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}+\frac{17}{9}x+\left(\frac{17}{18}\right)^{2}=-\frac{10}{9}+\left(\frac{17}{18}\right)^{2}
\frac{17}{9}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ \frac{17}{18} ਨਿਕਲੇ। ਫੇਰ, \frac{17}{18} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}+\frac{17}{9}x+\frac{289}{324}=-\frac{10}{9}+\frac{289}{324}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ \frac{17}{18} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}+\frac{17}{9}x+\frac{289}{324}=-\frac{71}{324}
ਸਾਂਝਾ ਡਿਨੋਮੀਨੇਟਰ(ਹੇਠਲੀ ਸੰਖਿਆ) ਲੱਭ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ(ਉੱਤਲੀ ਸੰਖਿਆ) ਨੂੰ ਜੋੜ ਕੇ -\frac{10}{9} ਨੂੰ \frac{289}{324} ਵਿੱਚ ਜੋੜੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
\left(x+\frac{17}{18}\right)^{2}=-\frac{71}{324}
ਫੈਕਟਰ x^{2}+\frac{17}{9}x+\frac{289}{324}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x+\frac{17}{18}\right)^{2}}=\sqrt{-\frac{71}{324}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x+\frac{17}{18}=\frac{\sqrt{71}i}{18} x+\frac{17}{18}=-\frac{\sqrt{71}i}{18}
ਸਪਸ਼ਟ ਕਰੋ।
x=\frac{-17+\sqrt{71}i}{18} x=\frac{-\sqrt{71}i-17}{18}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \frac{17}{18} ਨੂੰ ਘਟਾਓ।