x ਲਈ ਹਲ ਕਰੋ
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
x = -\frac{3}{2} = -1\frac{1}{2} = -1.5
ਗ੍ਰਾਫ
ਕੁਇਜ਼
Polynomial
5 ਪ੍ਰਸ਼ਨ ਇਸ ਵਰਗੇ ਹਨ:
{ \left(3x \right) }^{ 2 } + { 6 }^{ 2 } = { \left(5x \right) }^{ 2 }
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
3^{2}x^{2}+6^{2}=\left(5x\right)^{2}
\left(3x\right)^{2} ਦਾ ਵਿਸਥਾਰ ਕਰੋ।
9x^{2}+6^{2}=\left(5x\right)^{2}
3 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 9 ਪ੍ਰਾਪਤ ਕਰੋ।
9x^{2}+36=\left(5x\right)^{2}
6 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 36 ਪ੍ਰਾਪਤ ਕਰੋ।
9x^{2}+36=5^{2}x^{2}
\left(5x\right)^{2} ਦਾ ਵਿਸਥਾਰ ਕਰੋ।
9x^{2}+36=25x^{2}
5 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 25 ਪ੍ਰਾਪਤ ਕਰੋ।
9x^{2}+36-25x^{2}=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 25x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
-16x^{2}+36=0
-16x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 9x^{2} ਅਤੇ -25x^{2} ਨੂੰ ਮਿਲਾਓ।
-16x^{2}=-36
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 36 ਨੂੰ ਘਟਾ ਦਿਓ। ਸਿਫਰ ਵਿੱਚੋ ਘਟਾਈ ਗਈ ਰਕਮ ਦਾ ਜਵਾਬ ਉਹੀ ਰਕਮ ਹੁੰਦੀ ਹੈ।
x^{2}=\frac{-36}{-16}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -16 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}=\frac{9}{4}
-4 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{-36}{-16} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x=\frac{3}{2} x=-\frac{3}{2}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
3^{2}x^{2}+6^{2}=\left(5x\right)^{2}
\left(3x\right)^{2} ਦਾ ਵਿਸਥਾਰ ਕਰੋ।
9x^{2}+6^{2}=\left(5x\right)^{2}
3 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 9 ਪ੍ਰਾਪਤ ਕਰੋ।
9x^{2}+36=\left(5x\right)^{2}
6 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 36 ਪ੍ਰਾਪਤ ਕਰੋ।
9x^{2}+36=5^{2}x^{2}
\left(5x\right)^{2} ਦਾ ਵਿਸਥਾਰ ਕਰੋ।
9x^{2}+36=25x^{2}
5 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 25 ਪ੍ਰਾਪਤ ਕਰੋ।
9x^{2}+36-25x^{2}=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 25x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
-16x^{2}+36=0
-16x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 9x^{2} ਅਤੇ -25x^{2} ਨੂੰ ਮਿਲਾਓ।
x=\frac{0±\sqrt{0^{2}-4\left(-16\right)\times 36}}{2\left(-16\right)}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ -16 ਨੂੰ a ਲਈ, 0 ਨੂੰ b ਲਈ, ਅਤੇ 36 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{0±\sqrt{-4\left(-16\right)\times 36}}{2\left(-16\right)}
0 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{0±\sqrt{64\times 36}}{2\left(-16\right)}
-4 ਨੂੰ -16 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{0±\sqrt{2304}}{2\left(-16\right)}
64 ਨੂੰ 36 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{0±48}{2\left(-16\right)}
2304 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{0±48}{-32}
2 ਨੂੰ -16 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=-\frac{3}{2}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{0±48}{-32} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 16 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{48}{-32} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x=\frac{3}{2}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{0±48}{-32} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 16 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{-48}{-32} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x=-\frac{3}{2} x=\frac{3}{2}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}