ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

2^{2}x^{2}-2\left(-x\right)-3=-1
\left(2x\right)^{2} ਦਾ ਵਿਸਥਾਰ ਕਰੋ।
4x^{2}-2\left(-x\right)-3=-1
2 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 4 ਪ੍ਰਾਪਤ ਕਰੋ।
4x^{2}-2\left(-x\right)-3+1=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 1 ਜੋੜੋ।
4x^{2}-2\left(-x\right)-2=0
-2 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -3 ਅਤੇ 1 ਨੂੰ ਜੋੜੋ।
4x^{2}-2\left(-1\right)x-2=0
-2 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -1 ਅਤੇ 2 ਨੂੰ ਗੁਣਾ ਕਰੋ।
4x^{2}+2x-2=0
2 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -2 ਅਤੇ -1 ਨੂੰ ਗੁਣਾ ਕਰੋ।
2x^{2}+x-1=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 2 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
a+b=1 ab=2\left(-1\right)=-2
ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, ਸਮੂਹ ਬਣਾ ਕੇ ਖੱਬੇ ਪਾਸੇ ਦਾ ਫੈਕਟਰ ਕੱਢੋ। ਪਹਿਲਾਂ, ਖੱਬੇ ਪਾਸੇ ਵਾਲੇ ਨੂੰ 2x^{2}+ax+bx-1 ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
a=-1 b=2
ਕਿਉਂਕਿ ab ਨੈਗੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੇ ਵਿਪਰੀਤ ਚਿੰਨ੍ਹ ਹੁੰਦੇ ਹਨ। ਕਿਉਂਕਿ a+b ਪਾਜ਼ੇਟਿਵ ਹੈ, ਪਾਜ਼ੇਟਿਵ ਨੰਬਰ ਦੀ ਨੈਗੇਟਿਵ ਨਾਲੋਂ ਵੱਡੀ ਐਬਸੋਲਿਉਟ ਵੈਲਯੂ ਹੁੰਦੀ ਹੈ। ਸਿਰਫ਼ ਅਜਿਹਾ ਜੋੜਾ ਹੀ ਸਿਸਟਮ ਹੱਲ ਹੁੰਦਾ ਹੈ।
\left(2x^{2}-x\right)+\left(2x-1\right)
2x^{2}+x-1 ਨੂੰ \left(2x^{2}-x\right)+\left(2x-1\right) ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
x\left(2x-1\right)+2x-1
2x^{2}-x ਵਿੱਚੋਂ x ਫੈਕਟਰ ਕੱਢੋ।
\left(2x-1\right)\left(x+1\right)
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੌਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੋਮਨ ਟਰਮ 2x-1 ਦਾ ਫੈਕਟਰ ਕੱਢੋ।
x=\frac{1}{2} x=-1
ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਲਈ, 2x-1=0 ਅਤੇ x+1=0 ਨੂੰ ਹੱਲ ਕਰੋ।
2^{2}x^{2}-2\left(-x\right)-3=-1
\left(2x\right)^{2} ਦਾ ਵਿਸਥਾਰ ਕਰੋ।
4x^{2}-2\left(-x\right)-3=-1
2 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 4 ਪ੍ਰਾਪਤ ਕਰੋ।
4x^{2}-2\left(-x\right)-3+1=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 1 ਜੋੜੋ।
4x^{2}-2\left(-x\right)-2=0
-2 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -3 ਅਤੇ 1 ਨੂੰ ਜੋੜੋ।
4x^{2}-2\left(-1\right)x-2=0
-2 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -1 ਅਤੇ 2 ਨੂੰ ਗੁਣਾ ਕਰੋ।
4x^{2}+2x-2=0
2 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -2 ਅਤੇ -1 ਨੂੰ ਗੁਣਾ ਕਰੋ।
x=\frac{-2±\sqrt{2^{2}-4\times 4\left(-2\right)}}{2\times 4}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 4 ਨੂੰ a ਲਈ, 2 ਨੂੰ b ਲਈ, ਅਤੇ -2 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-2±\sqrt{4-4\times 4\left(-2\right)}}{2\times 4}
2 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-2±\sqrt{4-16\left(-2\right)}}{2\times 4}
-4 ਨੂੰ 4 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-2±\sqrt{4+32}}{2\times 4}
-16 ਨੂੰ -2 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-2±\sqrt{36}}{2\times 4}
4 ਨੂੰ 32 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-2±6}{2\times 4}
36 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{-2±6}{8}
2 ਨੂੰ 4 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{4}{8}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-2±6}{8} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -2 ਨੂੰ 6 ਵਿੱਚ ਜੋੜੋ।
x=\frac{1}{2}
4 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{4}{8} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x=-\frac{8}{8}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-2±6}{8} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -2 ਵਿੱਚੋਂ 6 ਨੂੰ ਘਟਾਓ।
x=-1
-8 ਨੂੰ 8 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{1}{2} x=-1
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
2^{2}x^{2}-2\left(-x\right)-3=-1
\left(2x\right)^{2} ਦਾ ਵਿਸਥਾਰ ਕਰੋ।
4x^{2}-2\left(-x\right)-3=-1
2 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 4 ਪ੍ਰਾਪਤ ਕਰੋ।
4x^{2}-2\left(-x\right)=-1+3
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 3 ਜੋੜੋ।
4x^{2}-2\left(-x\right)=2
2 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -1 ਅਤੇ 3 ਨੂੰ ਜੋੜੋ।
4x^{2}-2\left(-1\right)x=2
-2 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -1 ਅਤੇ 2 ਨੂੰ ਗੁਣਾ ਕਰੋ।
4x^{2}+2x=2
2 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -2 ਅਤੇ -1 ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{4x^{2}+2x}{4}=\frac{2}{4}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 4 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\frac{2}{4}x=\frac{2}{4}
4 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 4 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}+\frac{1}{2}x=\frac{2}{4}
2 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{2}{4} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x^{2}+\frac{1}{2}x=\frac{1}{2}
2 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{2}{4} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=\frac{1}{2}+\left(\frac{1}{4}\right)^{2}
\frac{1}{2}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ \frac{1}{4} ਨਿਕਲੇ। ਫੇਰ, \frac{1}{4} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{1}{2}+\frac{1}{16}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ \frac{1}{4} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{9}{16}
ਸਾਂਝਾ ਡਿਨੋਮੀਨੇਟਰ(ਹੇਠਲੀ ਸੰਖਿਆ) ਲੱਭ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ(ਉੱਤਲੀ ਸੰਖਿਆ) ਨੂੰ ਜੋੜ ਕੇ \frac{1}{2} ਨੂੰ \frac{1}{16} ਵਿੱਚ ਜੋੜੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
\left(x+\frac{1}{4}\right)^{2}=\frac{9}{16}
ਫੈਕਟਰ x^{2}+\frac{1}{2}x+\frac{1}{16}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{\frac{9}{16}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x+\frac{1}{4}=\frac{3}{4} x+\frac{1}{4}=-\frac{3}{4}
ਸਪਸ਼ਟ ਕਰੋ।
x=\frac{1}{2} x=-1
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \frac{1}{4} ਨੂੰ ਘਟਾਓ।