x ਲਈ ਹਲ ਕਰੋ
x = \frac{3 \sqrt{17} - 3}{2} \approx 4.684658438
x=\frac{-3\sqrt{17}-3}{2}\approx -7.684658438
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
144-24x+x^{2}+144=9x^{2}
\left(12-x\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
288-24x+x^{2}=9x^{2}
288 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 144 ਅਤੇ 144 ਨੂੰ ਜੋੜੋ।
288-24x+x^{2}-9x^{2}=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 9x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
288-24x-8x^{2}=0
-8x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x^{2} ਅਤੇ -9x^{2} ਨੂੰ ਮਿਲਾਓ।
-8x^{2}-24x+288=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\left(-8\right)\times 288}}{2\left(-8\right)}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ -8 ਨੂੰ a ਲਈ, -24 ਨੂੰ b ਲਈ, ਅਤੇ 288 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-\left(-24\right)±\sqrt{576-4\left(-8\right)\times 288}}{2\left(-8\right)}
-24 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-\left(-24\right)±\sqrt{576+32\times 288}}{2\left(-8\right)}
-4 ਨੂੰ -8 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-24\right)±\sqrt{576+9216}}{2\left(-8\right)}
32 ਨੂੰ 288 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-24\right)±\sqrt{9792}}{2\left(-8\right)}
576 ਨੂੰ 9216 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\left(-24\right)±24\sqrt{17}}{2\left(-8\right)}
9792 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{24±24\sqrt{17}}{2\left(-8\right)}
-24 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 24 ਹੈ।
x=\frac{24±24\sqrt{17}}{-16}
2 ਨੂੰ -8 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{24\sqrt{17}+24}{-16}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{24±24\sqrt{17}}{-16} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 24 ਨੂੰ 24\sqrt{17} ਵਿੱਚ ਜੋੜੋ।
x=\frac{-3\sqrt{17}-3}{2}
24+24\sqrt{17} ਨੂੰ -16 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{24-24\sqrt{17}}{-16}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{24±24\sqrt{17}}{-16} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 24 ਵਿੱਚੋਂ 24\sqrt{17} ਨੂੰ ਘਟਾਓ।
x=\frac{3\sqrt{17}-3}{2}
24-24\sqrt{17} ਨੂੰ -16 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{-3\sqrt{17}-3}{2} x=\frac{3\sqrt{17}-3}{2}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
144-24x+x^{2}+144=9x^{2}
\left(12-x\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
288-24x+x^{2}=9x^{2}
288 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 144 ਅਤੇ 144 ਨੂੰ ਜੋੜੋ।
288-24x+x^{2}-9x^{2}=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 9x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
288-24x-8x^{2}=0
-8x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x^{2} ਅਤੇ -9x^{2} ਨੂੰ ਮਿਲਾਓ।
-24x-8x^{2}=-288
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 288 ਨੂੰ ਘਟਾ ਦਿਓ। ਸਿਫਰ ਵਿੱਚੋ ਘਟਾਈ ਗਈ ਰਕਮ ਦਾ ਜਵਾਬ ਉਹੀ ਰਕਮ ਹੁੰਦੀ ਹੈ।
-8x^{2}-24x=-288
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
\frac{-8x^{2}-24x}{-8}=-\frac{288}{-8}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -8 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\left(-\frac{24}{-8}\right)x=-\frac{288}{-8}
-8 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -8 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}+3x=-\frac{288}{-8}
-24 ਨੂੰ -8 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}+3x=36
-288 ਨੂੰ -8 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=36+\left(\frac{3}{2}\right)^{2}
3, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ \frac{3}{2} ਨਿਕਲੇ। ਫੇਰ, \frac{3}{2} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}+3x+\frac{9}{4}=36+\frac{9}{4}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ \frac{3}{2} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}+3x+\frac{9}{4}=\frac{153}{4}
36 ਨੂੰ \frac{9}{4} ਵਿੱਚ ਜੋੜੋ।
\left(x+\frac{3}{2}\right)^{2}=\frac{153}{4}
ਫੈਕਟਰ x^{2}+3x+\frac{9}{4}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{153}{4}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x+\frac{3}{2}=\frac{3\sqrt{17}}{2} x+\frac{3}{2}=-\frac{3\sqrt{17}}{2}
ਸਪਸ਼ਟ ਕਰੋ।
x=\frac{3\sqrt{17}-3}{2} x=\frac{-3\sqrt{17}-3}{2}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \frac{3}{2} ਨੂੰ ਘਟਾਓ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}