x ਲਈ ਹਲ ਕਰੋ
x=\frac{1}{4}=0.25
x=\frac{3}{7}\approx 0.428571429
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\left(0\sqrt{3}x\right)^{2}+\left(5-15x\right)^{2}=\left(1+x\right)^{2}
0 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 0 ਅਤੇ 5 ਨੂੰ ਗੁਣਾ ਕਰੋ।
0^{2}+\left(5-15x\right)^{2}=\left(1+x\right)^{2}
ਸਿਫਰ ਨਾਲ ਗੁਣਾ ਕੀਤੀ ਰਕਮ ਦਾ ਜਵਾਬ ਸਿਫਰ ਵਿੱਚ ਹੁੰਦਾ ਹੈ।
0+\left(5-15x\right)^{2}=\left(1+x\right)^{2}
0 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 0 ਪ੍ਰਾਪਤ ਕਰੋ।
0+25-150x+225x^{2}=\left(1+x\right)^{2}
\left(5-15x\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
25-150x+225x^{2}=\left(1+x\right)^{2}
25 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 0 ਅਤੇ 25 ਨੂੰ ਜੋੜੋ।
25-150x+225x^{2}=1+2x+x^{2}
\left(1+x\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
25-150x+225x^{2}-1=2x+x^{2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 1 ਨੂੰ ਘਟਾ ਦਿਓ।
24-150x+225x^{2}=2x+x^{2}
24 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 25 ਵਿੱਚੋਂ 1 ਨੂੰ ਘਟਾ ਦਿਓ।
24-150x+225x^{2}-2x=x^{2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 2x ਨੂੰ ਘਟਾ ਦਿਓ।
24-152x+225x^{2}=x^{2}
-152x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -150x ਅਤੇ -2x ਨੂੰ ਮਿਲਾਓ।
24-152x+225x^{2}-x^{2}=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
24-152x+224x^{2}=0
224x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 225x^{2} ਅਤੇ -x^{2} ਨੂੰ ਮਿਲਾਓ।
224x^{2}-152x+24=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-\left(-152\right)±\sqrt{\left(-152\right)^{2}-4\times 224\times 24}}{2\times 224}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 224 ਨੂੰ a ਲਈ, -152 ਨੂੰ b ਲਈ, ਅਤੇ 24 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-\left(-152\right)±\sqrt{23104-4\times 224\times 24}}{2\times 224}
-152 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-\left(-152\right)±\sqrt{23104-896\times 24}}{2\times 224}
-4 ਨੂੰ 224 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-152\right)±\sqrt{23104-21504}}{2\times 224}
-896 ਨੂੰ 24 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-152\right)±\sqrt{1600}}{2\times 224}
23104 ਨੂੰ -21504 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\left(-152\right)±40}{2\times 224}
1600 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{152±40}{2\times 224}
-152 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 152 ਹੈ।
x=\frac{152±40}{448}
2 ਨੂੰ 224 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{192}{448}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{152±40}{448} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 152 ਨੂੰ 40 ਵਿੱਚ ਜੋੜੋ।
x=\frac{3}{7}
64 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{192}{448} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x=\frac{112}{448}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{152±40}{448} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 152 ਵਿੱਚੋਂ 40 ਨੂੰ ਘਟਾਓ।
x=\frac{1}{4}
112 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{112}{448} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x=\frac{3}{7} x=\frac{1}{4}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
\left(0\sqrt{3}x\right)^{2}+\left(5-15x\right)^{2}=\left(1+x\right)^{2}
0 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 0 ਅਤੇ 5 ਨੂੰ ਗੁਣਾ ਕਰੋ।
0^{2}+\left(5-15x\right)^{2}=\left(1+x\right)^{2}
ਸਿਫਰ ਨਾਲ ਗੁਣਾ ਕੀਤੀ ਰਕਮ ਦਾ ਜਵਾਬ ਸਿਫਰ ਵਿੱਚ ਹੁੰਦਾ ਹੈ।
0+\left(5-15x\right)^{2}=\left(1+x\right)^{2}
0 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 0 ਪ੍ਰਾਪਤ ਕਰੋ।
0+25-150x+225x^{2}=\left(1+x\right)^{2}
\left(5-15x\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
25-150x+225x^{2}=\left(1+x\right)^{2}
25 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 0 ਅਤੇ 25 ਨੂੰ ਜੋੜੋ।
25-150x+225x^{2}=1+2x+x^{2}
\left(1+x\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
25-150x+225x^{2}-2x=1+x^{2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 2x ਨੂੰ ਘਟਾ ਦਿਓ।
25-152x+225x^{2}=1+x^{2}
-152x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -150x ਅਤੇ -2x ਨੂੰ ਮਿਲਾਓ।
25-152x+225x^{2}-x^{2}=1
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
25-152x+224x^{2}=1
224x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 225x^{2} ਅਤੇ -x^{2} ਨੂੰ ਮਿਲਾਓ।
-152x+224x^{2}=1-25
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 25 ਨੂੰ ਘਟਾ ਦਿਓ।
-152x+224x^{2}=-24
-24 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 1 ਵਿੱਚੋਂ 25 ਨੂੰ ਘਟਾ ਦਿਓ।
224x^{2}-152x=-24
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
\frac{224x^{2}-152x}{224}=-\frac{24}{224}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 224 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\left(-\frac{152}{224}\right)x=-\frac{24}{224}
224 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 224 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}-\frac{19}{28}x=-\frac{24}{224}
8 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{-152}{224} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x^{2}-\frac{19}{28}x=-\frac{3}{28}
8 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{-24}{224} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x^{2}-\frac{19}{28}x+\left(-\frac{19}{56}\right)^{2}=-\frac{3}{28}+\left(-\frac{19}{56}\right)^{2}
-\frac{19}{28}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -\frac{19}{56} ਨਿਕਲੇ। ਫੇਰ, -\frac{19}{56} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}-\frac{19}{28}x+\frac{361}{3136}=-\frac{3}{28}+\frac{361}{3136}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ -\frac{19}{56} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}-\frac{19}{28}x+\frac{361}{3136}=\frac{25}{3136}
ਸਾਂਝਾ ਡਿਨੋਮੀਨੇਟਰ(ਹੇਠਲੀ ਸੰਖਿਆ) ਲੱਭ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ(ਉੱਤਲੀ ਸੰਖਿਆ) ਨੂੰ ਜੋੜ ਕੇ -\frac{3}{28} ਨੂੰ \frac{361}{3136} ਵਿੱਚ ਜੋੜੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
\left(x-\frac{19}{56}\right)^{2}=\frac{25}{3136}
ਫੈਕਟਰ x^{2}-\frac{19}{28}x+\frac{361}{3136}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x-\frac{19}{56}\right)^{2}}=\sqrt{\frac{25}{3136}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x-\frac{19}{56}=\frac{5}{56} x-\frac{19}{56}=-\frac{5}{56}
ਸਪਸ਼ਟ ਕਰੋ।
x=\frac{3}{7} x=\frac{1}{4}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{19}{56} ਨੂੰ ਜੋੜੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}