ਮੁਲਾਂਕਣ ਕਰੋ
-\frac{15}{128}=-0.1171875
ਫੈਕਟਰ
-\frac{15}{128} = -0.1171875
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\frac{1}{4}\left(\left(\frac{1}{2}\right)^{2}-\frac{1}{2}+1\right)\left(\left(\frac{1}{2}\right)^{3}-\left(\frac{1}{2}\right)^{2}+\frac{1}{2}-1\right)
\frac{1}{2} ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ \frac{1}{4} ਪ੍ਰਾਪਤ ਕਰੋ।
\frac{1}{4}\left(\frac{1}{4}-\frac{1}{2}+1\right)\left(\left(\frac{1}{2}\right)^{3}-\left(\frac{1}{2}\right)^{2}+\frac{1}{2}-1\right)
\frac{1}{2} ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ \frac{1}{4} ਪ੍ਰਾਪਤ ਕਰੋ।
\frac{1}{4}\left(\frac{1}{4}-\frac{2}{4}+1\right)\left(\left(\frac{1}{2}\right)^{3}-\left(\frac{1}{2}\right)^{2}+\frac{1}{2}-1\right)
4 ਅਤੇ 2 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 4 ਹੈ। \frac{1}{4} ਅਤੇ \frac{1}{2} ਨੂੰ 4 ਡਿਨੋਮਿਨੇਟਰ ਵਾਲੇ ਅੰਸ਼ ਵਿੱਚ ਬਦਲੋ।
\frac{1}{4}\left(\frac{1-2}{4}+1\right)\left(\left(\frac{1}{2}\right)^{3}-\left(\frac{1}{2}\right)^{2}+\frac{1}{2}-1\right)
ਕਿਉਂਕਿ \frac{1}{4} ਅਤੇ \frac{2}{4} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{1}{4}\left(-\frac{1}{4}+1\right)\left(\left(\frac{1}{2}\right)^{3}-\left(\frac{1}{2}\right)^{2}+\frac{1}{2}-1\right)
-1 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 1 ਵਿੱਚੋਂ 2 ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{1}{4}\left(-\frac{1}{4}+\frac{4}{4}\right)\left(\left(\frac{1}{2}\right)^{3}-\left(\frac{1}{2}\right)^{2}+\frac{1}{2}-1\right)
1 ਨੂੰ \frac{4}{4} ਅੰਸ਼ 'ਤੇ ਬਦਲੋ।
\frac{1}{4}\times \frac{-1+4}{4}\left(\left(\frac{1}{2}\right)^{3}-\left(\frac{1}{2}\right)^{2}+\frac{1}{2}-1\right)
ਕਿਉਂਕਿ -\frac{1}{4} ਅਤੇ \frac{4}{4} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\frac{1}{4}\times \frac{3}{4}\left(\left(\frac{1}{2}\right)^{3}-\left(\frac{1}{2}\right)^{2}+\frac{1}{2}-1\right)
3 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -1 ਅਤੇ 4 ਨੂੰ ਜੋੜੋ।
\frac{1\times 3}{4\times 4}\left(\left(\frac{1}{2}\right)^{3}-\left(\frac{1}{2}\right)^{2}+\frac{1}{2}-1\right)
ਨਿਉਮਰੇਟਰ ਟਾਇਮਸ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਟਾਈਮਸ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਗੁਣਾ ਕਰਕੇ \frac{1}{4} ਟਾਈਮਸ \frac{3}{4} ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{3}{16}\left(\left(\frac{1}{2}\right)^{3}-\left(\frac{1}{2}\right)^{2}+\frac{1}{2}-1\right)
\frac{1\times 3}{4\times 4} ਫ੍ਰੈਕਸ਼ਨ ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{3}{16}\left(\frac{1}{8}-\left(\frac{1}{2}\right)^{2}+\frac{1}{2}-1\right)
\frac{1}{2} ਨੂੰ 3 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ \frac{1}{8} ਪ੍ਰਾਪਤ ਕਰੋ।
\frac{3}{16}\left(\frac{1}{8}-\frac{1}{4}+\frac{1}{2}-1\right)
\frac{1}{2} ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ \frac{1}{4} ਪ੍ਰਾਪਤ ਕਰੋ।
\frac{3}{16}\left(\frac{1}{8}-\frac{2}{8}+\frac{1}{2}-1\right)
8 ਅਤੇ 4 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 8 ਹੈ। \frac{1}{8} ਅਤੇ \frac{1}{4} ਨੂੰ 8 ਡਿਨੋਮਿਨੇਟਰ ਵਾਲੇ ਅੰਸ਼ ਵਿੱਚ ਬਦਲੋ।
\frac{3}{16}\left(\frac{1-2}{8}+\frac{1}{2}-1\right)
ਕਿਉਂਕਿ \frac{1}{8} ਅਤੇ \frac{2}{8} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{3}{16}\left(-\frac{1}{8}+\frac{1}{2}-1\right)
-1 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 1 ਵਿੱਚੋਂ 2 ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{3}{16}\left(-\frac{1}{8}+\frac{4}{8}-1\right)
8 ਅਤੇ 2 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 8 ਹੈ। -\frac{1}{8} ਅਤੇ \frac{1}{2} ਨੂੰ 8 ਡਿਨੋਮਿਨੇਟਰ ਵਾਲੇ ਅੰਸ਼ ਵਿੱਚ ਬਦਲੋ।
\frac{3}{16}\left(\frac{-1+4}{8}-1\right)
ਕਿਉਂਕਿ -\frac{1}{8} ਅਤੇ \frac{4}{8} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\frac{3}{16}\left(\frac{3}{8}-1\right)
3 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -1 ਅਤੇ 4 ਨੂੰ ਜੋੜੋ।
\frac{3}{16}\left(\frac{3}{8}-\frac{8}{8}\right)
1 ਨੂੰ \frac{8}{8} ਅੰਸ਼ 'ਤੇ ਬਦਲੋ।
\frac{3}{16}\times \frac{3-8}{8}
ਕਿਉਂਕਿ \frac{3}{8} ਅਤੇ \frac{8}{8} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{3}{16}\left(-\frac{5}{8}\right)
-5 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 3 ਵਿੱਚੋਂ 8 ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{3\left(-5\right)}{16\times 8}
ਨਿਉਮਰੇਟਰ ਟਾਇਮਸ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਟਾਈਮਸ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਗੁਣਾ ਕਰਕੇ \frac{3}{16} ਟਾਈਮਸ -\frac{5}{8} ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{-15}{128}
\frac{3\left(-5\right)}{16\times 8} ਫ੍ਰੈਕਸ਼ਨ ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
-\frac{15}{128}
ਨੈਗੇਟਿਵ ਚਿੰਨ੍ਹ ਨੂੰ ਬਾਹਰ ਕੱਢ ਕੇ, ਅੰਕ \frac{-15}{128} ਨੂੰ -\frac{15}{128} ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}