ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
ਮੁਲਾਂਕਣ ਕਰੋ
Tick mark Image
ਵਿਸਤਾਰ ਕਰੋ
Tick mark Image

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

\left(\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\right)^{2}
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ \sqrt{3}+1 ਦੇ ਨਾਲ ਗੁਣਾ ਕਰਕੇ \frac{\sqrt{3}+1}{\sqrt{3}-1} ਦੇ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਰੈਸ਼ਨਲਾਈਜ਼ ਕਰੋ।
\left(\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{3}\right)^{2}-1^{2}}\right)^{2}
\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right) 'ਤੇ ਵਿਚਾਰ ਕਰੋ। ਨਿਯਮ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਗੁਣਾ ਨੂੰ ਵਰਗਾਂ ਦੇ ਅੰਤਰ ਵਿੱਚ ਬਦਲਿਆ ਜਾ ਸਕਦਾ ਹੈ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}।
\left(\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{3-1}\right)^{2}
\sqrt{3} ਦਾ ਵਰਗ ਕਰੋ। 1 ਦਾ ਵਰਗ ਕਰੋ।
\left(\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{2}\right)^{2}
2 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 3 ਵਿੱਚੋਂ 1 ਨੂੰ ਘਟਾ ਦਿਓ।
\left(\frac{\left(\sqrt{3}+1\right)^{2}}{2}\right)^{2}
\left(\sqrt{3}+1\right)^{2} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ \sqrt{3}+1 ਅਤੇ \sqrt{3}+1 ਨੂੰ ਗੁਣਾ ਕਰੋ।
\left(\frac{\left(\sqrt{3}\right)^{2}+2\sqrt{3}+1}{2}\right)^{2}
\left(\sqrt{3}+1\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
\left(\frac{3+2\sqrt{3}+1}{2}\right)^{2}
\sqrt{3} ਦਾ ਸਕ੍ਵੇਅਰ 3 ਹੈ।
\left(\frac{4+2\sqrt{3}}{2}\right)^{2}
4 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 3 ਅਤੇ 1 ਨੂੰ ਜੋੜੋ।
\left(2+\sqrt{3}\right)^{2}
4+2\sqrt{3} ਦੇ ਹਰ ਅੰਕ ਨੂੰ 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ 2+\sqrt{3} ਨਿਕਲੇ।
4+4\sqrt{3}+\left(\sqrt{3}\right)^{2}
\left(2+\sqrt{3}\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
4+4\sqrt{3}+3
\sqrt{3} ਦਾ ਸਕ੍ਵੇਅਰ 3 ਹੈ।
7+4\sqrt{3}
7 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4 ਅਤੇ 3 ਨੂੰ ਜੋੜੋ।
\left(\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\right)^{2}
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ \sqrt{3}+1 ਦੇ ਨਾਲ ਗੁਣਾ ਕਰਕੇ \frac{\sqrt{3}+1}{\sqrt{3}-1} ਦੇ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਰੈਸ਼ਨਲਾਈਜ਼ ਕਰੋ।
\left(\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{3}\right)^{2}-1^{2}}\right)^{2}
\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right) 'ਤੇ ਵਿਚਾਰ ਕਰੋ। ਨਿਯਮ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਗੁਣਾ ਨੂੰ ਵਰਗਾਂ ਦੇ ਅੰਤਰ ਵਿੱਚ ਬਦਲਿਆ ਜਾ ਸਕਦਾ ਹੈ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}।
\left(\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{3-1}\right)^{2}
\sqrt{3} ਦਾ ਵਰਗ ਕਰੋ। 1 ਦਾ ਵਰਗ ਕਰੋ।
\left(\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{2}\right)^{2}
2 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 3 ਵਿੱਚੋਂ 1 ਨੂੰ ਘਟਾ ਦਿਓ।
\left(\frac{\left(\sqrt{3}+1\right)^{2}}{2}\right)^{2}
\left(\sqrt{3}+1\right)^{2} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ \sqrt{3}+1 ਅਤੇ \sqrt{3}+1 ਨੂੰ ਗੁਣਾ ਕਰੋ।
\left(\frac{\left(\sqrt{3}\right)^{2}+2\sqrt{3}+1}{2}\right)^{2}
\left(\sqrt{3}+1\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
\left(\frac{3+2\sqrt{3}+1}{2}\right)^{2}
\sqrt{3} ਦਾ ਸਕ੍ਵੇਅਰ 3 ਹੈ।
\left(\frac{4+2\sqrt{3}}{2}\right)^{2}
4 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 3 ਅਤੇ 1 ਨੂੰ ਜੋੜੋ।
\left(2+\sqrt{3}\right)^{2}
4+2\sqrt{3} ਦੇ ਹਰ ਅੰਕ ਨੂੰ 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ 2+\sqrt{3} ਨਿਕਲੇ।
4+4\sqrt{3}+\left(\sqrt{3}\right)^{2}
\left(2+\sqrt{3}\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
4+4\sqrt{3}+3
\sqrt{3} ਦਾ ਸਕ੍ਵੇਅਰ 3 ਹੈ।
7+4\sqrt{3}
7 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4 ਅਤੇ 3 ਨੂੰ ਜੋੜੋ।