ਅੰਤਰ ਦੱਸੋ w.r.t. x_6
\frac{1}{\left(\cos(x_{6})\right)^{2}}
ਮੁਲਾਂਕਣ ਕਰੋ
\tan(x_{6})
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\frac{\mathrm{d}}{\mathrm{d}x_{6}}(\frac{\sin(x_{6})}{\cos(x_{6})})
ਟੈਂਜੇਂਟ ਦੀ ਪਰਿਭਾਸ਼ਾ ਵਰਤੋਂ।
\frac{\cos(x_{6})\frac{\mathrm{d}}{\mathrm{d}x_{6}}(\sin(x_{6}))-\sin(x_{6})\frac{\mathrm{d}}{\mathrm{d}x_{6}}(\cos(x_{6}))}{\left(\cos(x_{6})\right)^{2}}
ਅੰਤਰ ਕੱਢਣ ਯੋਗ ਕਿਸੇ ਦੋ ਫੰਗਸ਼ਨ ਲਈ, ਦੋ ਫੰਗਸ਼ਨਾਂ ਦੇ ਭਾਗਫਲ ਦਾ ਡੈਰੀਵੇਟਿਵ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਨਿਉਮਰੇਟਰ ਦੇ ਡੈਰੀਵੇਟਿਵ ਨਾਲ ਗੁਣਾ ਕਰਕੇ, - ਨਿਉਮਰੇਟਰ ਨੂੰ ਡੀਨੋਮਿਨੇਟਰ ਨਾਲ ਗੁਣਾ ਕਰਕੇ, ਸਾਰੇ ਵਰਗ ਵਿੱਚ ਰੱਖੇ ਡੀਨੋਮਿਨੇਟਰ ਨਾਲ ਤਕਸੀਮ ਕਰਕੇ ਨਿਕਲਦਾ ਹੈ।
\frac{\cos(x_{6})\cos(x_{6})-\sin(x_{6})\left(-\sin(x_{6})\right)}{\left(\cos(x_{6})\right)^{2}}
sin(x_{6}) ਦਾ ਡੈਰੀਵੇਟਿਵ cos(x_{6}) ਹੈ, ਅਤੇ cos(x_{6}) ਦਾ ਡੈਰੀਵੇਟਿਵ −sin(x_{6})ਹੈ।
\frac{\left(\cos(x_{6})\right)^{2}+\left(\sin(x_{6})\right)^{2}}{\left(\cos(x_{6})\right)^{2}}
ਸਪਸ਼ਟ ਕਰੋ।
\frac{1}{\left(\cos(x_{6})\right)^{2}}
ਪਾਯਥਾਗੋਰਿਅਨ ਆਈਡੇਂਟਿਟੀ ਦੀ ਵਰਤੋਂ ਕਰੋ।
\left(\sec(x_{6})\right)^{2}
ਸੀਕੇਂਟ ਦੀ ਪਰਿਭਾਸ਼ਾ ਵਰਤੋਂ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}