x ਲਈ ਹਲ ਕਰੋ
x=-4
x=-5
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\sqrt{x+5}=\sqrt{x+5-4-x}-\sqrt{-4-x}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \sqrt{-4-x} ਨੂੰ ਘਟਾਓ।
\sqrt{x+5}=\sqrt{x+1-x}-\sqrt{-4-x}
1 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 5 ਵਿੱਚੋਂ 4 ਨੂੰ ਘਟਾ ਦਿਓ।
\sqrt{x+5}=\sqrt{1}-\sqrt{-4-x}
0 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x ਅਤੇ -x ਨੂੰ ਮਿਲਾਓ।
\sqrt{x+5}=1-\sqrt{-4-x}
1 ਦੇ ਵਰਗ ਮੂਲ ਦਾ ਹਿਸਾਬ ਲਗਾਓ ਅਤੇ 1 ਪ੍ਰਾਪਤ ਕਰੋ।
\left(\sqrt{x+5}\right)^{2}=\left(1-\sqrt{-4-x}\right)^{2}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਕਰੋ।
x+5=\left(1-\sqrt{-4-x}\right)^{2}
\sqrt{x+5} ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ x+5 ਪ੍ਰਾਪਤ ਕਰੋ।
x+5=1-2\sqrt{-4-x}+\left(\sqrt{-4-x}\right)^{2}
\left(1-\sqrt{-4-x}\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
x+5=1-2\sqrt{-4-x}-4-x
\sqrt{-4-x} ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ -4-x ਪ੍ਰਾਪਤ ਕਰੋ।
x+5=-3-2\sqrt{-4-x}-x
-3 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 1 ਵਿੱਚੋਂ 4 ਨੂੰ ਘਟਾ ਦਿਓ।
x+5-\left(-3-x\right)=-2\sqrt{-4-x}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ -3-x ਨੂੰ ਘਟਾਓ।
x+5+3+x=-2\sqrt{-4-x}
-3-x ਦਾ ਵਿਪਰੀਤ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਹਰ ਟਰਮ ਦੇ ਵਿਪਰੀਤ ਦਾ ਪਤਾ ਲਗਾਓ।
x+8+x=-2\sqrt{-4-x}
8 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 5 ਅਤੇ 3 ਨੂੰ ਜੋੜੋ।
2x+8=-2\sqrt{-4-x}
2x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x ਅਤੇ x ਨੂੰ ਮਿਲਾਓ।
\left(2x+8\right)^{2}=\left(-2\sqrt{-4-x}\right)^{2}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਕਰੋ।
4x^{2}+32x+64=\left(-2\sqrt{-4-x}\right)^{2}
\left(2x+8\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
4x^{2}+32x+64=\left(-2\right)^{2}\left(\sqrt{-4-x}\right)^{2}
\left(-2\sqrt{-4-x}\right)^{2} ਦਾ ਵਿਸਥਾਰ ਕਰੋ।
4x^{2}+32x+64=4\left(\sqrt{-4-x}\right)^{2}
-2 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 4 ਪ੍ਰਾਪਤ ਕਰੋ।
4x^{2}+32x+64=4\left(-4-x\right)
\sqrt{-4-x} ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ -4-x ਪ੍ਰਾਪਤ ਕਰੋ।
4x^{2}+32x+64=-16-4x
4 ਨੂੰ -4-x ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
4x^{2}+32x+64+4x=-16
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 4x ਜੋੜੋ।
4x^{2}+36x+64=-16
36x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 32x ਅਤੇ 4x ਨੂੰ ਮਿਲਾਓ।
4x^{2}+36x+64+16=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 16 ਜੋੜੋ।
4x^{2}+36x+80=0
80 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 64 ਅਤੇ 16 ਨੂੰ ਜੋੜੋ।
x^{2}+9x+20=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 4 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
a+b=9 ab=1\times 20=20
ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, ਸਮੂਹ ਬਣਾ ਕੇ ਖੱਬੇ ਪਾਸੇ ਦਾ ਫੈਕਟਰ ਕੱਢੋ। ਪਹਿਲਾਂ, ਖੱਬੇ ਪਾਸੇ ਵਾਲੇ ਨੂੰ x^{2}+ax+bx+20 ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
1,20 2,10 4,5
ਕਿਉਂਕਿ ab ਪਾਜ਼ੇਟਿਵ ਹੈ, a ਅਤੇ b ਦਾ ਸਮਾਨ ਚਿੰਨ੍ਹ ਹੁੰਦਾ ਹੈ। ਕਿਉਂਕਿ a+b ਪਾਜ਼ੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੋਵੇਂ ਪਾਜ਼ੇਟਿਵ ਹੁੰਦੇ ਹਨ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ 20 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
1+20=21 2+10=12 4+5=9
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
a=4 b=5
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ 9 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(x^{2}+4x\right)+\left(5x+20\right)
x^{2}+9x+20 ਨੂੰ \left(x^{2}+4x\right)+\left(5x+20\right) ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
x\left(x+4\right)+5\left(x+4\right)
ਪਹਿਲੇ ਸਮੂਹ ਵਿੱਚ x ਦਾ ਅਤੇ ਦੂਜੇ ਵਿੱਚ 5 ਦਾ ਫੈਕਟਰ ਬਣਾਓ।
\left(x+4\right)\left(x+5\right)
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੌਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੋਮਨ ਟਰਮ x+4 ਦਾ ਫੈਕਟਰ ਕੱਢੋ।
x=-4 x=-5
ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਲਈ, x+4=0 ਅਤੇ x+5=0 ਨੂੰ ਹੱਲ ਕਰੋ।
\sqrt{-4+5}+\sqrt{-4-\left(-4\right)}=\sqrt{-4+5-4-\left(-4\right)}
ਸਮੀਕਰਨ \sqrt{x+5}+\sqrt{-4-x}=\sqrt{x+5-4-x} ਵਿੱਚ, x ਲਈ -4 ਨੂੰ ਬਦਲ ਦਿਓ।
1=1
ਸਪਸ਼ਟ ਕਰੋ। ਮਾਨ x=-4 ਸਮੀਕਰਨ ਨੂੰ ਸੰਤੁਸ਼ਟ ਕਰਦਾ ਹੈ।
\sqrt{-5+5}+\sqrt{-4-\left(-5\right)}=\sqrt{-5+5-4-\left(-5\right)}
ਸਮੀਕਰਨ \sqrt{x+5}+\sqrt{-4-x}=\sqrt{x+5-4-x} ਵਿੱਚ, x ਲਈ -5 ਨੂੰ ਬਦਲ ਦਿਓ।
1=1
ਸਪਸ਼ਟ ਕਰੋ। ਮਾਨ x=-5 ਸਮੀਕਰਨ ਨੂੰ ਸੰਤੁਸ਼ਟ ਕਰਦਾ ਹੈ।
x=-4 x=-5
\sqrt{x+5}=-\sqrt{-x-4}+1 ਦੇ ਸਾਰੇ ਹੱਲਾਂ ਦੀ ਸੂਚੀ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}