x ਲਈ ਹਲ ਕਰੋ
x=\frac{\sqrt{5}-7}{2}\approx -2.381966011
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\left(\sqrt{x+5}\right)^{2}=\left(x+4\right)^{2}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਕਰੋ।
x+5=\left(x+4\right)^{2}
\sqrt{x+5} ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ x+5 ਪ੍ਰਾਪਤ ਕਰੋ।
x+5=x^{2}+8x+16
\left(x+4\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
x+5-x^{2}=8x+16
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
x+5-x^{2}-8x=16
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 8x ਨੂੰ ਘਟਾ ਦਿਓ।
-7x+5-x^{2}=16
-7x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x ਅਤੇ -8x ਨੂੰ ਮਿਲਾਓ।
-7x+5-x^{2}-16=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 16 ਨੂੰ ਘਟਾ ਦਿਓ।
-7x-11-x^{2}=0
-11 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 5 ਵਿੱਚੋਂ 16 ਨੂੰ ਘਟਾ ਦਿਓ।
-x^{2}-7x-11=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\left(-1\right)\left(-11\right)}}{2\left(-1\right)}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ -1 ਨੂੰ a ਲਈ, -7 ਨੂੰ b ਲਈ, ਅਤੇ -11 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-\left(-7\right)±\sqrt{49-4\left(-1\right)\left(-11\right)}}{2\left(-1\right)}
-7 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-\left(-7\right)±\sqrt{49+4\left(-11\right)}}{2\left(-1\right)}
-4 ਨੂੰ -1 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-7\right)±\sqrt{49-44}}{2\left(-1\right)}
4 ਨੂੰ -11 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-7\right)±\sqrt{5}}{2\left(-1\right)}
49 ਨੂੰ -44 ਵਿੱਚ ਜੋੜੋ।
x=\frac{7±\sqrt{5}}{2\left(-1\right)}
-7 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 7 ਹੈ।
x=\frac{7±\sqrt{5}}{-2}
2 ਨੂੰ -1 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{\sqrt{5}+7}{-2}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{7±\sqrt{5}}{-2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 7 ਨੂੰ \sqrt{5} ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\sqrt{5}-7}{2}
7+\sqrt{5} ਨੂੰ -2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{7-\sqrt{5}}{-2}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{7±\sqrt{5}}{-2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 7 ਵਿੱਚੋਂ \sqrt{5} ਨੂੰ ਘਟਾਓ।
x=\frac{\sqrt{5}-7}{2}
7-\sqrt{5} ਨੂੰ -2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{-\sqrt{5}-7}{2} x=\frac{\sqrt{5}-7}{2}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
\sqrt{\frac{-\sqrt{5}-7}{2}+5}=\frac{-\sqrt{5}-7}{2}+4
ਸਮੀਕਰਨ \sqrt{x+5}=x+4 ਵਿੱਚ, x ਲਈ \frac{-\sqrt{5}-7}{2} ਨੂੰ ਬਦਲ ਦਿਓ।
-\left(\frac{1}{2}-\frac{1}{2}\times 5^{\frac{1}{2}}\right)=-\frac{1}{2}\times 5^{\frac{1}{2}}+\frac{1}{2}
ਸਪਸ਼ਟ ਕਰੋ। ਮਾਨ x=\frac{-\sqrt{5}-7}{2} ਸਮੀਕਰਨ ਨੂੰ ਸਤੁੰਸ਼ਟ ਨਹੀਂ ਕਰਦਾ ਕਿਉਂਕਿ ਨੂੰ ਖੱਬੇ ਅਤੇ ਸੱਜੇ ਪਾਸੇ ਵਿਪਰੀਤ ਚਿੰਨ੍ਹ ਹਨ।
\sqrt{\frac{\sqrt{5}-7}{2}+5}=\frac{\sqrt{5}-7}{2}+4
ਸਮੀਕਰਨ \sqrt{x+5}=x+4 ਵਿੱਚ, x ਲਈ \frac{\sqrt{5}-7}{2} ਨੂੰ ਬਦਲ ਦਿਓ।
\frac{1}{2}+\frac{1}{2}\times 5^{\frac{1}{2}}=\frac{1}{2}\times 5^{\frac{1}{2}}+\frac{1}{2}
ਸਪਸ਼ਟ ਕਰੋ। ਮਾਨ x=\frac{\sqrt{5}-7}{2} ਸਮੀਕਰਨ ਨੂੰ ਸੰਤੁਸ਼ਟ ਕਰਦਾ ਹੈ।
x=\frac{\sqrt{5}-7}{2}
ਸਮੀਕਰਨ \sqrt{x+5}=x+4 ਦਾ ਇੱਕ ਅਨੋਖਾ ਹਲ ਹੈ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}