ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
ਮੁਲਾਂਕਣ ਕਰੋ
Tick mark Image

ਸਾਂਝਾ ਕਰੋ

\sqrt{6\left(1+\frac{1}{4}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\frac{1}{5^{2}}+\frac{1}{6^{2}}+\frac{1}{7^{2}}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
2 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 4 ਪ੍ਰਾਪਤ ਕਰੋ।
\sqrt{6\left(\frac{4}{4}+\frac{1}{4}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\frac{1}{5^{2}}+\frac{1}{6^{2}}+\frac{1}{7^{2}}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
1 ਨੂੰ \frac{4}{4} ਅੰਸ਼ 'ਤੇ ਬਦਲੋ।
\sqrt{6\left(\frac{4+1}{4}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\frac{1}{5^{2}}+\frac{1}{6^{2}}+\frac{1}{7^{2}}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
ਕਿਉਂਕਿ \frac{4}{4} ਅਤੇ \frac{1}{4} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\sqrt{6\left(\frac{5}{4}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\frac{1}{5^{2}}+\frac{1}{6^{2}}+\frac{1}{7^{2}}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
5 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4 ਅਤੇ 1 ਨੂੰ ਜੋੜੋ।
\sqrt{6\left(\frac{5}{4}+\frac{1}{9}+\frac{1}{4^{2}}+\frac{1}{5^{2}}+\frac{1}{6^{2}}+\frac{1}{7^{2}}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
3 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 9 ਪ੍ਰਾਪਤ ਕਰੋ।
\sqrt{6\left(\frac{45}{36}+\frac{4}{36}+\frac{1}{4^{2}}+\frac{1}{5^{2}}+\frac{1}{6^{2}}+\frac{1}{7^{2}}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
4 ਅਤੇ 9 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 36 ਹੈ। \frac{5}{4} ਅਤੇ \frac{1}{9} ਨੂੰ 36 ਡਿਨੋਮਿਨੇਟਰ ਵਾਲੇ ਅੰਸ਼ ਵਿੱਚ ਬਦਲੋ।
\sqrt{6\left(\frac{45+4}{36}+\frac{1}{4^{2}}+\frac{1}{5^{2}}+\frac{1}{6^{2}}+\frac{1}{7^{2}}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
ਕਿਉਂਕਿ \frac{45}{36} ਅਤੇ \frac{4}{36} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\sqrt{6\left(\frac{49}{36}+\frac{1}{4^{2}}+\frac{1}{5^{2}}+\frac{1}{6^{2}}+\frac{1}{7^{2}}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
49 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 45 ਅਤੇ 4 ਨੂੰ ਜੋੜੋ।
\sqrt{6\left(\frac{49}{36}+\frac{1}{16}+\frac{1}{5^{2}}+\frac{1}{6^{2}}+\frac{1}{7^{2}}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
4 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 16 ਪ੍ਰਾਪਤ ਕਰੋ।
\sqrt{6\left(\frac{196}{144}+\frac{9}{144}+\frac{1}{5^{2}}+\frac{1}{6^{2}}+\frac{1}{7^{2}}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
36 ਅਤੇ 16 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 144 ਹੈ। \frac{49}{36} ਅਤੇ \frac{1}{16} ਨੂੰ 144 ਡਿਨੋਮਿਨੇਟਰ ਵਾਲੇ ਅੰਸ਼ ਵਿੱਚ ਬਦਲੋ।
\sqrt{6\left(\frac{196+9}{144}+\frac{1}{5^{2}}+\frac{1}{6^{2}}+\frac{1}{7^{2}}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
ਕਿਉਂਕਿ \frac{196}{144} ਅਤੇ \frac{9}{144} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\sqrt{6\left(\frac{205}{144}+\frac{1}{5^{2}}+\frac{1}{6^{2}}+\frac{1}{7^{2}}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
205 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 196 ਅਤੇ 9 ਨੂੰ ਜੋੜੋ।
\sqrt{6\left(\frac{205}{144}+\frac{1}{25}+\frac{1}{6^{2}}+\frac{1}{7^{2}}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
5 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 25 ਪ੍ਰਾਪਤ ਕਰੋ।
\sqrt{6\left(\frac{5125}{3600}+\frac{144}{3600}+\frac{1}{6^{2}}+\frac{1}{7^{2}}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
144 ਅਤੇ 25 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 3600 ਹੈ। \frac{205}{144} ਅਤੇ \frac{1}{25} ਨੂੰ 3600 ਡਿਨੋਮਿਨੇਟਰ ਵਾਲੇ ਅੰਸ਼ ਵਿੱਚ ਬਦਲੋ।
\sqrt{6\left(\frac{5125+144}{3600}+\frac{1}{6^{2}}+\frac{1}{7^{2}}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
ਕਿਉਂਕਿ \frac{5125}{3600} ਅਤੇ \frac{144}{3600} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\sqrt{6\left(\frac{5269}{3600}+\frac{1}{6^{2}}+\frac{1}{7^{2}}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
5269 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 5125 ਅਤੇ 144 ਨੂੰ ਜੋੜੋ।
\sqrt{6\left(\frac{5269}{3600}+\frac{1}{36}+\frac{1}{7^{2}}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
6 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 36 ਪ੍ਰਾਪਤ ਕਰੋ।
\sqrt{6\left(\frac{5269}{3600}+\frac{100}{3600}+\frac{1}{7^{2}}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
3600 ਅਤੇ 36 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 3600 ਹੈ। \frac{5269}{3600} ਅਤੇ \frac{1}{36} ਨੂੰ 3600 ਡਿਨੋਮਿਨੇਟਰ ਵਾਲੇ ਅੰਸ਼ ਵਿੱਚ ਬਦਲੋ।
\sqrt{6\left(\frac{5269+100}{3600}+\frac{1}{7^{2}}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
ਕਿਉਂਕਿ \frac{5269}{3600} ਅਤੇ \frac{100}{3600} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\sqrt{6\left(\frac{5369}{3600}+\frac{1}{7^{2}}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
5369 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 5269 ਅਤੇ 100 ਨੂੰ ਜੋੜੋ।
\sqrt{6\left(\frac{5369}{3600}+\frac{1}{49}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
7 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 49 ਪ੍ਰਾਪਤ ਕਰੋ।
\sqrt{6\left(\frac{263081}{176400}+\frac{3600}{176400}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
3600 ਅਤੇ 49 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 176400 ਹੈ। \frac{5369}{3600} ਅਤੇ \frac{1}{49} ਨੂੰ 176400 ਡਿਨੋਮਿਨੇਟਰ ਵਾਲੇ ਅੰਸ਼ ਵਿੱਚ ਬਦਲੋ।
\sqrt{6\left(\frac{263081+3600}{176400}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
ਕਿਉਂਕਿ \frac{263081}{176400} ਅਤੇ \frac{3600}{176400} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\sqrt{6\left(\frac{266681}{176400}+\frac{1}{8^{2}}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
266681 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 263081 ਅਤੇ 3600 ਨੂੰ ਜੋੜੋ।
\sqrt{6\left(\frac{266681}{176400}+\frac{1}{64}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
8 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 64 ਪ੍ਰਾਪਤ ਕਰੋ।
\sqrt{6\left(\frac{1066724}{705600}+\frac{11025}{705600}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
176400 ਅਤੇ 64 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 705600 ਹੈ। \frac{266681}{176400} ਅਤੇ \frac{1}{64} ਨੂੰ 705600 ਡਿਨੋਮਿਨੇਟਰ ਵਾਲੇ ਅੰਸ਼ ਵਿੱਚ ਬਦਲੋ।
\sqrt{6\left(\frac{1066724+11025}{705600}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
ਕਿਉਂਕਿ \frac{1066724}{705600} ਅਤੇ \frac{11025}{705600} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\sqrt{6\left(\frac{1077749}{705600}+\frac{1}{9^{2}}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
1077749 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 1066724 ਅਤੇ 11025 ਨੂੰ ਜੋੜੋ।
\sqrt{6\left(\frac{1077749}{705600}+\frac{1}{81}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
9 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 81 ਪ੍ਰਾਪਤ ਕਰੋ।
\sqrt{6\left(\frac{9699741}{6350400}+\frac{78400}{6350400}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
705600 ਅਤੇ 81 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 6350400 ਹੈ। \frac{1077749}{705600} ਅਤੇ \frac{1}{81} ਨੂੰ 6350400 ਡਿਨੋਮਿਨੇਟਰ ਵਾਲੇ ਅੰਸ਼ ਵਿੱਚ ਬਦਲੋ।
\sqrt{6\left(\frac{9699741+78400}{6350400}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
ਕਿਉਂਕਿ \frac{9699741}{6350400} ਅਤੇ \frac{78400}{6350400} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\sqrt{6\left(\frac{9778141}{6350400}+\frac{1}{10^{2}}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
9778141 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 9699741 ਅਤੇ 78400 ਨੂੰ ਜੋੜੋ।
\sqrt{6\left(\frac{9778141}{6350400}+\frac{1}{100}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
10 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 100 ਪ੍ਰਾਪਤ ਕਰੋ।
\sqrt{6\left(\frac{9778141}{6350400}+\frac{63504}{6350400}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
6350400 ਅਤੇ 100 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 6350400 ਹੈ। \frac{9778141}{6350400} ਅਤੇ \frac{1}{100} ਨੂੰ 6350400 ਡਿਨੋਮਿਨੇਟਰ ਵਾਲੇ ਅੰਸ਼ ਵਿੱਚ ਬਦਲੋ।
\sqrt{6\left(\frac{9778141+63504}{6350400}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
ਕਿਉਂਕਿ \frac{9778141}{6350400} ਅਤੇ \frac{63504}{6350400} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\sqrt{6\left(\frac{9841645}{6350400}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
9841645 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 9778141 ਅਤੇ 63504 ਨੂੰ ਜੋੜੋ।
\sqrt{6\left(\frac{1968329}{1270080}+\frac{1}{11^{2}}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
5 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{9841645}{6350400} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
\sqrt{6\left(\frac{1968329}{1270080}+\frac{1}{121}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
11 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 121 ਪ੍ਰਾਪਤ ਕਰੋ।
\sqrt{6\left(\frac{238167809}{153679680}+\frac{1270080}{153679680}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
1270080 ਅਤੇ 121 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 153679680 ਹੈ। \frac{1968329}{1270080} ਅਤੇ \frac{1}{121} ਨੂੰ 153679680 ਡਿਨੋਮਿਨੇਟਰ ਵਾਲੇ ਅੰਸ਼ ਵਿੱਚ ਬਦਲੋ।
\sqrt{6\left(\frac{238167809+1270080}{153679680}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
ਕਿਉਂਕਿ \frac{238167809}{153679680} ਅਤੇ \frac{1270080}{153679680} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\sqrt{6\left(\frac{239437889}{153679680}+\frac{1}{12^{2}}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
239437889 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 238167809 ਅਤੇ 1270080 ਨੂੰ ਜੋੜੋ।
\sqrt{6\left(\frac{239437889}{153679680}+\frac{1}{144}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
12 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 144 ਪ੍ਰਾਪਤ ਕਰੋ।
\sqrt{6\left(\frac{239437889}{153679680}+\frac{1067220}{153679680}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
153679680 ਅਤੇ 144 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 153679680 ਹੈ। \frac{239437889}{153679680} ਅਤੇ \frac{1}{144} ਨੂੰ 153679680 ਡਿਨੋਮਿਨੇਟਰ ਵਾਲੇ ਅੰਸ਼ ਵਿੱਚ ਬਦਲੋ।
\sqrt{6\left(\frac{239437889+1067220}{153679680}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
ਕਿਉਂਕਿ \frac{239437889}{153679680} ਅਤੇ \frac{1067220}{153679680} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\sqrt{6\left(\frac{240505109}{153679680}+\frac{1}{13^{2}}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
240505109 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 239437889 ਅਤੇ 1067220 ਨੂੰ ਜੋੜੋ।
\sqrt{6\left(\frac{240505109}{153679680}+\frac{1}{169}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
13 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 169 ਪ੍ਰਾਪਤ ਕਰੋ।
\sqrt{6\left(\frac{40645363421}{25971865920}+\frac{153679680}{25971865920}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
153679680 ਅਤੇ 169 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 25971865920 ਹੈ। \frac{240505109}{153679680} ਅਤੇ \frac{1}{169} ਨੂੰ 25971865920 ਡਿਨੋਮਿਨੇਟਰ ਵਾਲੇ ਅੰਸ਼ ਵਿੱਚ ਬਦਲੋ।
\sqrt{6\left(\frac{40645363421+153679680}{25971865920}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
ਕਿਉਂਕਿ \frac{40645363421}{25971865920} ਅਤੇ \frac{153679680}{25971865920} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\sqrt{6\left(\frac{40799043101}{25971865920}+\frac{1}{14^{2}}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
40799043101 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 40645363421 ਅਤੇ 153679680 ਨੂੰ ਜੋੜੋ।
\sqrt{6\left(\frac{40799043101}{25971865920}+\frac{1}{196}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
14 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 196 ਪ੍ਰਾਪਤ ਕਰੋ।
\sqrt{6\left(\frac{40799043101}{25971865920}+\frac{132509520}{25971865920}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
25971865920 ਅਤੇ 196 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 25971865920 ਹੈ। \frac{40799043101}{25971865920} ਅਤੇ \frac{1}{196} ਨੂੰ 25971865920 ਡਿਨੋਮਿਨੇਟਰ ਵਾਲੇ ਅੰਸ਼ ਵਿੱਚ ਬਦਲੋ।
\sqrt{6\left(\frac{40799043101+132509520}{25971865920}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
ਕਿਉਂਕਿ \frac{40799043101}{25971865920} ਅਤੇ \frac{132509520}{25971865920} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\sqrt{6\left(\frac{40931552621}{25971865920}+\frac{1}{15^{2}}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
40931552621 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 40799043101 ਅਤੇ 132509520 ਨੂੰ ਜੋੜੋ।
\sqrt{6\left(\frac{40931552621}{25971865920}+\frac{1}{225}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
15 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 225 ਪ੍ਰਾਪਤ ਕਰੋ।
\sqrt{6\left(\frac{204657763105}{129859329600}+\frac{577152576}{129859329600}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
25971865920 ਅਤੇ 225 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 129859329600 ਹੈ। \frac{40931552621}{25971865920} ਅਤੇ \frac{1}{225} ਨੂੰ 129859329600 ਡਿਨੋਮਿਨੇਟਰ ਵਾਲੇ ਅੰਸ਼ ਵਿੱਚ ਬਦਲੋ।
\sqrt{6\left(\frac{204657763105+577152576}{129859329600}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
ਕਿਉਂਕਿ \frac{204657763105}{129859329600} ਅਤੇ \frac{577152576}{129859329600} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\sqrt{6\left(\frac{205234915681}{129859329600}+\frac{1}{16^{2}}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
205234915681 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 204657763105 ਅਤੇ 577152576 ਨੂੰ ਜੋੜੋ।
\sqrt{6\left(\frac{205234915681}{129859329600}+\frac{1}{256}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
16 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 256 ਪ੍ਰਾਪਤ ਕਰੋ।
\sqrt{6\left(\frac{820939662724}{519437318400}+\frac{2029052025}{519437318400}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
129859329600 ਅਤੇ 256 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 519437318400 ਹੈ। \frac{205234915681}{129859329600} ਅਤੇ \frac{1}{256} ਨੂੰ 519437318400 ਡਿਨੋਮਿਨੇਟਰ ਵਾਲੇ ਅੰਸ਼ ਵਿੱਚ ਬਦਲੋ।
\sqrt{6\left(\frac{820939662724+2029052025}{519437318400}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
ਕਿਉਂਕਿ \frac{820939662724}{519437318400} ਅਤੇ \frac{2029052025}{519437318400} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\sqrt{6\left(\frac{822968714749}{519437318400}+\frac{1}{17^{2}}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
822968714749 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 820939662724 ਅਤੇ 2029052025 ਨੂੰ ਜੋੜੋ।
\sqrt{6\left(\frac{822968714749}{519437318400}+\frac{1}{289}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
17 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 289 ਪ੍ਰਾਪਤ ਕਰੋ।
\sqrt{6\left(\frac{237837958562461}{150117385017600}+\frac{519437318400}{150117385017600}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
519437318400 ਅਤੇ 289 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 150117385017600 ਹੈ। \frac{822968714749}{519437318400} ਅਤੇ \frac{1}{289} ਨੂੰ 150117385017600 ਡਿਨੋਮਿਨੇਟਰ ਵਾਲੇ ਅੰਸ਼ ਵਿੱਚ ਬਦਲੋ।
\sqrt{6\left(\frac{237837958562461+519437318400}{150117385017600}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
ਕਿਉਂਕਿ \frac{237837958562461}{150117385017600} ਅਤੇ \frac{519437318400}{150117385017600} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\sqrt{6\left(\frac{238357395880861}{150117385017600}+\frac{1}{18^{2}}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
238357395880861 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 237837958562461 ਅਤੇ 519437318400 ਨੂੰ ਜੋੜੋ।
\sqrt{6\left(\frac{238357395880861}{150117385017600}+\frac{1}{324}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
18 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 324 ਪ੍ਰਾਪਤ ਕਰੋ।
\sqrt{6\left(\frac{238357395880861}{150117385017600}+\frac{463325262400}{150117385017600}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
150117385017600 ਅਤੇ 324 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 150117385017600 ਹੈ। \frac{238357395880861}{150117385017600} ਅਤੇ \frac{1}{324} ਨੂੰ 150117385017600 ਡਿਨੋਮਿਨੇਟਰ ਵਾਲੇ ਅੰਸ਼ ਵਿੱਚ ਬਦਲੋ।
\sqrt{6\left(\frac{238357395880861+463325262400}{150117385017600}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
ਕਿਉਂਕਿ \frac{238357395880861}{150117385017600} ਅਤੇ \frac{463325262400}{150117385017600} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\sqrt{6\left(\frac{238820721143261}{150117385017600}+\frac{1}{19^{2}}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
238820721143261 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 238357395880861 ਅਤੇ 463325262400 ਨੂੰ ਜੋੜੋ।
\sqrt{6\left(\frac{238820721143261}{150117385017600}+\frac{1}{361}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
19 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 361 ਪ੍ਰਾਪਤ ਕਰੋ।
\sqrt{6\left(\frac{86214280332717221}{54192375991353600}+\frac{150117385017600}{54192375991353600}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
150117385017600 ਅਤੇ 361 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 54192375991353600 ਹੈ। \frac{238820721143261}{150117385017600} ਅਤੇ \frac{1}{361} ਨੂੰ 54192375991353600 ਡਿਨੋਮਿਨੇਟਰ ਵਾਲੇ ਅੰਸ਼ ਵਿੱਚ ਬਦਲੋ।
\sqrt{6\left(\frac{86214280332717221+150117385017600}{54192375991353600}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
ਕਿਉਂਕਿ \frac{86214280332717221}{54192375991353600} ਅਤੇ \frac{150117385017600}{54192375991353600} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\sqrt{6\left(\frac{86364397717734821}{54192375991353600}+\frac{1}{20^{2}}+\frac{1}{21^{2}}\right)}
86364397717734821 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 86214280332717221 ਅਤੇ 150117385017600 ਨੂੰ ਜੋੜੋ।
\sqrt{6\left(\frac{86364397717734821}{54192375991353600}+\frac{1}{400}+\frac{1}{21^{2}}\right)}
20 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 400 ਪ੍ਰਾਪਤ ਕਰੋ।
\sqrt{6\left(\frac{86364397717734821}{54192375991353600}+\frac{135480939978384}{54192375991353600}+\frac{1}{21^{2}}\right)}
54192375991353600 ਅਤੇ 400 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 54192375991353600 ਹੈ। \frac{86364397717734821}{54192375991353600} ਅਤੇ \frac{1}{400} ਨੂੰ 54192375991353600 ਡਿਨੋਮਿਨੇਟਰ ਵਾਲੇ ਅੰਸ਼ ਵਿੱਚ ਬਦਲੋ।
\sqrt{6\left(\frac{86364397717734821+135480939978384}{54192375991353600}+\frac{1}{21^{2}}\right)}
ਕਿਉਂਕਿ \frac{86364397717734821}{54192375991353600} ਅਤੇ \frac{135480939978384}{54192375991353600} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\sqrt{6\left(\frac{86499878657713205}{54192375991353600}+\frac{1}{21^{2}}\right)}
86499878657713205 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 86364397717734821 ਅਤੇ 135480939978384 ਨੂੰ ਜੋੜੋ।
\sqrt{6\left(\frac{17299975731542641}{10838475198270720}+\frac{1}{21^{2}}\right)}
5 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{86499878657713205}{54192375991353600} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
\sqrt{6\left(\frac{17299975731542641}{10838475198270720}+\frac{1}{441}\right)}
21 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 441 ਪ੍ਰਾਪਤ ਕਰੋ।
\sqrt{6\left(\frac{17299975731542641}{10838475198270720}+\frac{24577041265920}{10838475198270720}\right)}
10838475198270720 ਅਤੇ 441 ਦਾ ਸਭ ਤੋਂ ਛੋਟਾ ਆਮ ਗੁਣਕ 10838475198270720 ਹੈ। \frac{17299975731542641}{10838475198270720} ਅਤੇ \frac{1}{441} ਨੂੰ 10838475198270720 ਡਿਨੋਮਿਨੇਟਰ ਵਾਲੇ ਅੰਸ਼ ਵਿੱਚ ਬਦਲੋ।
\sqrt{6\times \frac{17299975731542641+24577041265920}{10838475198270720}}
ਕਿਉਂਕਿ \frac{17299975731542641}{10838475198270720} ਅਤੇ \frac{24577041265920}{10838475198270720} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\sqrt{6\times \frac{17324552772808561}{10838475198270720}}
17324552772808561 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 17299975731542641 ਅਤੇ 24577041265920 ਨੂੰ ਜੋੜੋ।
\sqrt{6\times \frac{353562301485889}{221193371393280}}
49 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{17324552772808561}{10838475198270720} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
\sqrt{\frac{6\times 353562301485889}{221193371393280}}
6\times \frac{353562301485889}{221193371393280} ਨੂੰ ਇੱਕੋ ਫ੍ਰੈਕਸ਼ਨ ਵਜੋਂ ਜਾਹਰ ਕਰੋ।
\sqrt{\frac{2121373808915334}{221193371393280}}
2121373808915334 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 6 ਅਤੇ 353562301485889 ਨੂੰ ਗੁਣਾ ਕਰੋ।
\sqrt{\frac{353562301485889}{36865561898880}}
6 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{2121373808915334}{221193371393280} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
\frac{\sqrt{353562301485889}}{\sqrt{36865561898880}}
\sqrt{\frac{353562301485889}{36865561898880}} ਤਕਸੀਮ ਦੇ ਸਕ੍ਵੇਅਰ ਰੂਟ ਨੂੰ \frac{\sqrt{353562301485889}}{\sqrt{36865561898880}} ਸਕ੍ਵੇਅਰ ਰੂਟ ਦੀ ਤਕਸੀਮ ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
\frac{\sqrt{353562301485889}}{1108536\sqrt{30}}
36865561898880=1108536^{2}\times 30 ਨੂੰ ਵੱਖਰਾ ਕਰ ਦਿਓ। ਪ੍ਰੌਡਕਟ \sqrt{1108536^{2}\times 30} ਦੇ ਸਕ੍ਵੇਅਰ ਰੂਟ ਨੂੰ \sqrt{1108536^{2}}\sqrt{30} ਸਕ੍ਵੇਅਰ ਰੂਟ ਦੇ ਪ੍ਰੌਡਕਟ ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ। 1108536^{2} ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
\frac{\sqrt{353562301485889}\sqrt{30}}{1108536\left(\sqrt{30}\right)^{2}}
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ \sqrt{30} ਦੇ ਨਾਲ ਗੁਣਾ ਕਰਕੇ \frac{\sqrt{353562301485889}}{1108536\sqrt{30}} ਦੇ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਰੈਸ਼ਨਲਾਈਜ਼ ਕਰੋ।
\frac{\sqrt{353562301485889}\sqrt{30}}{1108536\times 30}
\sqrt{30} ਦਾ ਸਕ੍ਵੇਅਰ 30 ਹੈ।
\frac{\sqrt{10606869044576670}}{1108536\times 30}
\sqrt{353562301485889} ਅਤੇ \sqrt{30} ਨੂੰ ਗੁਣਾ ਕਰਕੇ, ਨੰਬਰਾਂ ਨੂੰ ਸਕ੍ਵੇਅਰ ਰੂਟ ਹੇਠਾਂ ਗੁਣਾ ਕਰੋ।
\frac{\sqrt{10606869044576670}}{33256080}
33256080 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 1108536 ਅਤੇ 30 ਨੂੰ ਗੁਣਾ ਕਰੋ।