x ਲਈ ਹਲ ਕਰੋ
x=3
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\left(\sqrt{4+2x-x^{2}}\right)^{2}=\left(x-2\right)^{2}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਕਰੋ।
4+2x-x^{2}=\left(x-2\right)^{2}
\sqrt{4+2x-x^{2}} ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 4+2x-x^{2} ਪ੍ਰਾਪਤ ਕਰੋ।
4+2x-x^{2}=x^{2}-4x+4
\left(x-2\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
4+2x-x^{2}-x^{2}=-4x+4
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
4+2x-2x^{2}=-4x+4
-2x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -x^{2} ਅਤੇ -x^{2} ਨੂੰ ਮਿਲਾਓ।
4+2x-2x^{2}+4x=4
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 4x ਜੋੜੋ।
4+6x-2x^{2}=4
6x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2x ਅਤੇ 4x ਨੂੰ ਮਿਲਾਓ।
4+6x-2x^{2}-4=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 4 ਨੂੰ ਘਟਾ ਦਿਓ।
6x-2x^{2}=0
0 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4 ਵਿੱਚੋਂ 4 ਨੂੰ ਘਟਾ ਦਿਓ।
x\left(6-2x\right)=0
x ਨੂੰ ਵੱਖਰਾ ਕਰ ਦਿਓ।
x=0 x=3
ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਲਈ, x=0 ਅਤੇ 6-2x=0 ਨੂੰ ਹੱਲ ਕਰੋ।
\sqrt{4+2\times 0-0^{2}}=0-2
ਸਮੀਕਰਨ \sqrt{4+2x-x^{2}}=x-2 ਵਿੱਚ, x ਲਈ 0 ਨੂੰ ਬਦਲ ਦਿਓ।
2=-2
ਸਪਸ਼ਟ ਕਰੋ। ਮਾਨ x=0 ਸਮੀਕਰਨ ਨੂੰ ਸਤੁੰਸ਼ਟ ਨਹੀਂ ਕਰਦਾ ਕਿਉਂਕਿ ਨੂੰ ਖੱਬੇ ਅਤੇ ਸੱਜੇ ਪਾਸੇ ਵਿਪਰੀਤ ਚਿੰਨ੍ਹ ਹਨ।
\sqrt{4+2\times 3-3^{2}}=3-2
ਸਮੀਕਰਨ \sqrt{4+2x-x^{2}}=x-2 ਵਿੱਚ, x ਲਈ 3 ਨੂੰ ਬਦਲ ਦਿਓ।
1=1
ਸਪਸ਼ਟ ਕਰੋ। ਮਾਨ x=3 ਸਮੀਕਰਨ ਨੂੰ ਸੰਤੁਸ਼ਟ ਕਰਦਾ ਹੈ।
x=3
ਸਮੀਕਰਨ \sqrt{4+2x-x^{2}}=x-2 ਦਾ ਇੱਕ ਅਨੋਖਾ ਹਲ ਹੈ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}