x ਲਈ ਹਲ ਕਰੋ
x=1
x=-1
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\sqrt{1-x}=\sqrt{2}-\sqrt{1+x}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \sqrt{1+x} ਨੂੰ ਘਟਾਓ।
\left(\sqrt{1-x}\right)^{2}=\left(\sqrt{2}-\sqrt{1+x}\right)^{2}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਕਰੋ।
1-x=\left(\sqrt{2}-\sqrt{1+x}\right)^{2}
\sqrt{1-x} ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 1-x ਪ੍ਰਾਪਤ ਕਰੋ।
1-x=\left(\sqrt{2}\right)^{2}-2\sqrt{2}\sqrt{1+x}+\left(\sqrt{1+x}\right)^{2}
\left(\sqrt{2}-\sqrt{1+x}\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
1-x=2-2\sqrt{2}\sqrt{1+x}+\left(\sqrt{1+x}\right)^{2}
\sqrt{2} ਦਾ ਸਕ੍ਵੇਅਰ 2 ਹੈ।
1-x=2-2\sqrt{2}\sqrt{1+x}+1+x
\sqrt{1+x} ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 1+x ਪ੍ਰਾਪਤ ਕਰੋ।
1-x=3-2\sqrt{2}\sqrt{1+x}+x
3 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2 ਅਤੇ 1 ਨੂੰ ਜੋੜੋ।
1-x-\left(3+x\right)=-2\sqrt{2}\sqrt{1+x}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 3+x ਨੂੰ ਘਟਾਓ।
1-x-3-x=-2\sqrt{2}\sqrt{1+x}
3+x ਦਾ ਵਿਪਰੀਤ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਹਰ ਟਰਮ ਦੇ ਵਿਪਰੀਤ ਦਾ ਪਤਾ ਲਗਾਓ।
-2-x-x=-2\sqrt{2}\sqrt{1+x}
-2 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 1 ਵਿੱਚੋਂ 3 ਨੂੰ ਘਟਾ ਦਿਓ।
-2-2x=-2\sqrt{2}\sqrt{1+x}
-2x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -x ਅਤੇ -x ਨੂੰ ਮਿਲਾਓ।
\left(-2-2x\right)^{2}=\left(-2\sqrt{2}\sqrt{1+x}\right)^{2}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਕਰੋ।
4+8x+4x^{2}=\left(-2\sqrt{2}\sqrt{1+x}\right)^{2}
\left(-2-2x\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
4+8x+4x^{2}=\left(-2\right)^{2}\left(\sqrt{2}\right)^{2}\left(\sqrt{1+x}\right)^{2}
\left(-2\sqrt{2}\sqrt{1+x}\right)^{2} ਦਾ ਵਿਸਥਾਰ ਕਰੋ।
4+8x+4x^{2}=4\left(\sqrt{2}\right)^{2}\left(\sqrt{1+x}\right)^{2}
-2 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 4 ਪ੍ਰਾਪਤ ਕਰੋ।
4+8x+4x^{2}=4\times 2\left(\sqrt{1+x}\right)^{2}
\sqrt{2} ਦਾ ਸਕ੍ਵੇਅਰ 2 ਹੈ।
4+8x+4x^{2}=8\left(\sqrt{1+x}\right)^{2}
8 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4 ਅਤੇ 2 ਨੂੰ ਗੁਣਾ ਕਰੋ।
4+8x+4x^{2}=8\left(1+x\right)
\sqrt{1+x} ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 1+x ਪ੍ਰਾਪਤ ਕਰੋ।
4+8x+4x^{2}=8+8x
8 ਨੂੰ 1+x ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
4+8x+4x^{2}-8=8x
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 8 ਨੂੰ ਘਟਾ ਦਿਓ।
-4+8x+4x^{2}=8x
-4 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4 ਵਿੱਚੋਂ 8 ਨੂੰ ਘਟਾ ਦਿਓ।
-4+8x+4x^{2}-8x=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 8x ਨੂੰ ਘਟਾ ਦਿਓ।
-4+4x^{2}=0
0 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 8x ਅਤੇ -8x ਨੂੰ ਮਿਲਾਓ।
-1+x^{2}=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 4 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
\left(x-1\right)\left(x+1\right)=0
-1+x^{2} 'ਤੇ ਵਿਚਾਰ ਕਰੋ। -1+x^{2} ਨੂੰ x^{2}-1^{2} ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ। ਵਰਗਾਂ ਦੇ ਅੰਤਰ ਨੂੰ ਇਸ ਨਿਯਮ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੈਕਟਰ ਵਿੱਚ ਵੰਡਿਆ ਜਾ ਸਕਦਾ ਹੈ: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right)।
x=1 x=-1
ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਲਈ, x-1=0 ਅਤੇ x+1=0 ਨੂੰ ਹੱਲ ਕਰੋ।
\sqrt{1-1}+\sqrt{1+1}=\sqrt{2}
ਸਮੀਕਰਨ \sqrt{1-x}+\sqrt{1+x}=\sqrt{2} ਵਿੱਚ, x ਲਈ 1 ਨੂੰ ਬਦਲ ਦਿਓ।
2^{\frac{1}{2}}=2^{\frac{1}{2}}
ਸਪਸ਼ਟ ਕਰੋ। ਮਾਨ x=1 ਸਮੀਕਰਨ ਨੂੰ ਸੰਤੁਸ਼ਟ ਕਰਦਾ ਹੈ।
\sqrt{1-\left(-1\right)}+\sqrt{1-1}=\sqrt{2}
ਸਮੀਕਰਨ \sqrt{1-x}+\sqrt{1+x}=\sqrt{2} ਵਿੱਚ, x ਲਈ -1 ਨੂੰ ਬਦਲ ਦਿਓ।
2^{\frac{1}{2}}=2^{\frac{1}{2}}
ਸਪਸ਼ਟ ਕਰੋ। ਮਾਨ x=-1 ਸਮੀਕਰਨ ਨੂੰ ਸੰਤੁਸ਼ਟ ਕਰਦਾ ਹੈ।
x=1 x=-1
\sqrt{1-x}=-\sqrt{x+1}+\sqrt{2} ਦੇ ਸਾਰੇ ਹੱਲਾਂ ਦੀ ਸੂਚੀ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}