x ਲਈ ਹਲ ਕਰੋ
x=14
x=6
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\left(\sqrt{x-5}\right)^{2}=\left(\sqrt{3x+7}-4\right)^{2}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਕਰੋ।
x-5=\left(\sqrt{3x+7}-4\right)^{2}
\sqrt{x-5} ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ x-5 ਪ੍ਰਾਪਤ ਕਰੋ।
x-5=\left(\sqrt{3x+7}\right)^{2}-8\sqrt{3x+7}+16
\left(\sqrt{3x+7}-4\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
x-5=3x+7-8\sqrt{3x+7}+16
\sqrt{3x+7} ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 3x+7 ਪ੍ਰਾਪਤ ਕਰੋ।
x-5=3x+23-8\sqrt{3x+7}
23 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 7 ਅਤੇ 16 ਨੂੰ ਜੋੜੋ।
x-5-\left(3x+23\right)=-8\sqrt{3x+7}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 3x+23 ਨੂੰ ਘਟਾਓ।
x-5-3x-23=-8\sqrt{3x+7}
3x+23 ਦਾ ਵਿਪਰੀਤ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਹਰ ਟਰਮ ਦੇ ਵਿਪਰੀਤ ਦਾ ਪਤਾ ਲਗਾਓ।
-2x-5-23=-8\sqrt{3x+7}
-2x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x ਅਤੇ -3x ਨੂੰ ਮਿਲਾਓ।
-2x-28=-8\sqrt{3x+7}
-28 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -5 ਵਿੱਚੋਂ 23 ਨੂੰ ਘਟਾ ਦਿਓ।
\left(-2x-28\right)^{2}=\left(-8\sqrt{3x+7}\right)^{2}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਕਰੋ।
4x^{2}+112x+784=\left(-8\sqrt{3x+7}\right)^{2}
\left(-2x-28\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
4x^{2}+112x+784=\left(-8\right)^{2}\left(\sqrt{3x+7}\right)^{2}
\left(-8\sqrt{3x+7}\right)^{2} ਦਾ ਵਿਸਥਾਰ ਕਰੋ।
4x^{2}+112x+784=64\left(\sqrt{3x+7}\right)^{2}
-8 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 64 ਪ੍ਰਾਪਤ ਕਰੋ।
4x^{2}+112x+784=64\left(3x+7\right)
\sqrt{3x+7} ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 3x+7 ਪ੍ਰਾਪਤ ਕਰੋ।
4x^{2}+112x+784=192x+448
64 ਨੂੰ 3x+7 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
4x^{2}+112x+784-192x=448
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 192x ਨੂੰ ਘਟਾ ਦਿਓ।
4x^{2}-80x+784=448
-80x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 112x ਅਤੇ -192x ਨੂੰ ਮਿਲਾਓ।
4x^{2}-80x+784-448=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 448 ਨੂੰ ਘਟਾ ਦਿਓ।
4x^{2}-80x+336=0
336 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 784 ਵਿੱਚੋਂ 448 ਨੂੰ ਘਟਾ ਦਿਓ।
x=\frac{-\left(-80\right)±\sqrt{\left(-80\right)^{2}-4\times 4\times 336}}{2\times 4}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 4 ਨੂੰ a ਲਈ, -80 ਨੂੰ b ਲਈ, ਅਤੇ 336 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-\left(-80\right)±\sqrt{6400-4\times 4\times 336}}{2\times 4}
-80 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-\left(-80\right)±\sqrt{6400-16\times 336}}{2\times 4}
-4 ਨੂੰ 4 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-80\right)±\sqrt{6400-5376}}{2\times 4}
-16 ਨੂੰ 336 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-80\right)±\sqrt{1024}}{2\times 4}
6400 ਨੂੰ -5376 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\left(-80\right)±32}{2\times 4}
1024 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{80±32}{2\times 4}
-80 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 80 ਹੈ।
x=\frac{80±32}{8}
2 ਨੂੰ 4 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{112}{8}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{80±32}{8} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 80 ਨੂੰ 32 ਵਿੱਚ ਜੋੜੋ।
x=14
112 ਨੂੰ 8 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{48}{8}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{80±32}{8} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 80 ਵਿੱਚੋਂ 32 ਨੂੰ ਘਟਾਓ।
x=6
48 ਨੂੰ 8 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=14 x=6
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
\sqrt{14-5}=\sqrt{3\times 14+7}-4
ਸਮੀਕਰਨ \sqrt{x-5}=\sqrt{3x+7}-4 ਵਿੱਚ, x ਲਈ 14 ਨੂੰ ਬਦਲ ਦਿਓ।
3=3
ਸਪਸ਼ਟ ਕਰੋ। ਮਾਨ x=14 ਸਮੀਕਰਨ ਨੂੰ ਸੰਤੁਸ਼ਟ ਕਰਦਾ ਹੈ।
\sqrt{6-5}=\sqrt{3\times 6+7}-4
ਸਮੀਕਰਨ \sqrt{x-5}=\sqrt{3x+7}-4 ਵਿੱਚ, x ਲਈ 6 ਨੂੰ ਬਦਲ ਦਿਓ।
1=1
ਸਪਸ਼ਟ ਕਰੋ। ਮਾਨ x=6 ਸਮੀਕਰਨ ਨੂੰ ਸੰਤੁਸ਼ਟ ਕਰਦਾ ਹੈ।
x=14 x=6
\sqrt{x-5}=\sqrt{3x+7}-4 ਦੇ ਸਾਰੇ ਹੱਲਾਂ ਦੀ ਸੂਚੀ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}