x ਲਈ ਹਲ ਕਰੋ
x=45
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\left(\sqrt{x+4}\right)^{2}=\left(1+\sqrt{x-9}\right)^{2}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਕਰੋ।
x+4=\left(1+\sqrt{x-9}\right)^{2}
\sqrt{x+4} ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ x+4 ਪ੍ਰਾਪਤ ਕਰੋ।
x+4=1+2\sqrt{x-9}+\left(\sqrt{x-9}\right)^{2}
\left(1+\sqrt{x-9}\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
x+4=1+2\sqrt{x-9}+x-9
\sqrt{x-9} ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ x-9 ਪ੍ਰਾਪਤ ਕਰੋ।
x+4=-8+2\sqrt{x-9}+x
-8 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 1 ਵਿੱਚੋਂ 9 ਨੂੰ ਘਟਾ ਦਿਓ।
x+4-2\sqrt{x-9}=-8+x
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 2\sqrt{x-9} ਨੂੰ ਘਟਾ ਦਿਓ।
x+4-2\sqrt{x-9}-x=-8
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ x ਨੂੰ ਘਟਾ ਦਿਓ।
4-2\sqrt{x-9}=-8
0 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x ਅਤੇ -x ਨੂੰ ਮਿਲਾਓ।
-2\sqrt{x-9}=-8-4
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 4 ਨੂੰ ਘਟਾ ਦਿਓ।
-2\sqrt{x-9}=-12
-12 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -8 ਵਿੱਚੋਂ 4 ਨੂੰ ਘਟਾ ਦਿਓ।
\sqrt{x-9}=\frac{-12}{-2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -2 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
\sqrt{x-9}=6
-12 ਨੂੰ -2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ 6 ਨਿਕਲੇ।
x-9=36
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਕਰੋ।
x-9-\left(-9\right)=36-\left(-9\right)
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 9 ਨੂੰ ਜੋੜੋ।
x=36-\left(-9\right)
-9 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
x=45
36 ਵਿੱਚੋਂ -9 ਨੂੰ ਘਟਾਓ।
\sqrt{45+4}=1+\sqrt{45-9}
ਸਮੀਕਰਨ \sqrt{x+4}=1+\sqrt{x-9} ਵਿੱਚ, x ਲਈ 45 ਨੂੰ ਬਦਲ ਦਿਓ।
7=7
ਸਪਸ਼ਟ ਕਰੋ। ਮਾਨ x=45 ਸਮੀਕਰਨ ਨੂੰ ਸੰਤੁਸ਼ਟ ਕਰਦਾ ਹੈ।
x=45
ਸਮੀਕਰਨ \sqrt{x+4}=\sqrt{x-9}+1 ਦਾ ਇੱਕ ਅਨੋਖਾ ਹਲ ਹੈ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}