ਮੁਲਾਂਕਣ ਕਰੋ
1
ਫੈਕਟਰ
1
ਕੁਇਜ਼
Arithmetic
5 ਪ੍ਰਸ਼ਨ ਇਸ ਵਰਗੇ ਹਨ:
\sqrt { 25 } - \sqrt { \frac { 1 } { 9 } } - \frac { 11 } { 3 } =
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
5-\sqrt{\frac{1}{9}}-\frac{11}{3}
25 ਦੇ ਵਰਗ ਮੂਲ ਦਾ ਹਿਸਾਬ ਲਗਾਓ ਅਤੇ 5 ਪ੍ਰਾਪਤ ਕਰੋ।
5-\frac{1}{3}-\frac{11}{3}
\frac{1}{9} ਤਕਸੀਮ ਦੇ ਸਕ੍ਵੇਅਰ ਰੂਟ ਨੂੰ \frac{\sqrt{1}}{\sqrt{9}} ਸਕ੍ਵੇਅਰ ਰੂਟ ਦੀ ਤਕਸੀਮ ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ। ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮੀਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਮੂਲ ਕੱਢੋ।
\frac{15}{3}-\frac{1}{3}-\frac{11}{3}
5 ਨੂੰ \frac{15}{3} ਅੰਸ਼ 'ਤੇ ਬਦਲੋ।
\frac{15-1}{3}-\frac{11}{3}
ਕਿਉਂਕਿ \frac{15}{3} ਅਤੇ \frac{1}{3} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{14}{3}-\frac{11}{3}
14 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 15 ਵਿੱਚੋਂ 1 ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{14-11}{3}
ਕਿਉਂਕਿ \frac{14}{3} ਅਤੇ \frac{11}{3} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਟੇਰਕਾਂ ਨੂੰ ਘਟਾ ਕੇ ਇਹਨਾਂ ਨੂੰ ਘਟਾਓ।
\frac{3}{3}
3 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 14 ਵਿੱਚੋਂ 11 ਨੂੰ ਘਟਾ ਦਿਓ।
1
3 ਨੂੰ 3 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ 1 ਨਿਕਲੇ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}