ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
z ਲਈ ਹਲ ਕਰੋ
Tick mark Image

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

\left(\sqrt{2z+3}\right)^{2}=\left(-z\right)^{2}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਕਰੋ।
2z+3=\left(-z\right)^{2}
\sqrt{2z+3} ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 2z+3 ਪ੍ਰਾਪਤ ਕਰੋ।
2z+3=z^{2}
-z ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ z^{2} ਪ੍ਰਾਪਤ ਕਰੋ।
2z+3-z^{2}=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ z^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
-z^{2}+2z+3=0
ਪੋਲੀਨੋਮਿਅਲ ਨੂੰ ਸਟੈਂਡਰਡ ਫਾਰਮ ਵਿੱਚ ਰੱਖਣ ਲਈ ਇਸ ਨੂੰ ਦੁਬਾਰਾ-ਵਿਵਸਥਿਤ ਕਰੋ। ਸੰਖਿਆਵਾਂ ਨੂੰ ਸਭ ਤੋਂ ਵੱਡੀ ਤੋਂ ਸਭ ਤੋਂ ਛੋਟੀ ਪਾਵਰ ਦੀ ਤਰਤੀਬ ਵਿੱਚ ਲਗਾਓ।
a+b=2 ab=-3=-3
ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, ਸਮੂਹ ਬਣਾ ਕੇ ਖੱਬੇ ਪਾਸੇ ਦਾ ਫੈਕਟਰ ਕੱਢੋ। ਪਹਿਲਾਂ, ਖੱਬੇ ਪਾਸੇ ਵਾਲੇ ਨੂੰ -z^{2}+az+bz+3 ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
a=3 b=-1
ਕਿਉਂਕਿ ab ਨੈਗੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੇ ਵਿਪਰੀਤ ਚਿੰਨ੍ਹ ਹੁੰਦੇ ਹਨ। ਕਿਉਂਕਿ a+b ਪਾਜ਼ੇਟਿਵ ਹੈ, ਪਾਜ਼ੇਟਿਵ ਨੰਬਰ ਦੀ ਨੈਗੇਟਿਵ ਨਾਲੋਂ ਵੱਡੀ ਐਬਸੋਲਿਉਟ ਵੈਲਯੂ ਹੁੰਦੀ ਹੈ। ਸਿਰਫ਼ ਅਜਿਹਾ ਜੋੜਾ ਹੀ ਸਿਸਟਮ ਹੱਲ ਹੁੰਦਾ ਹੈ।
\left(-z^{2}+3z\right)+\left(-z+3\right)
-z^{2}+2z+3 ਨੂੰ \left(-z^{2}+3z\right)+\left(-z+3\right) ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
-z\left(z-3\right)-\left(z-3\right)
ਪਹਿਲੇ ਸਮੂਹ ਵਿੱਚ -z ਦਾ ਅਤੇ ਦੂਜੇ ਵਿੱਚ -1 ਦਾ ਫੈਕਟਰ ਬਣਾਓ।
\left(z-3\right)\left(-z-1\right)
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੌਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੋਮਨ ਟਰਮ z-3 ਦਾ ਫੈਕਟਰ ਕੱਢੋ।
z=3 z=-1
ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਲਈ, z-3=0 ਅਤੇ -z-1=0 ਨੂੰ ਹੱਲ ਕਰੋ।
\sqrt{2\times 3+3}=-3
ਸਮੀਕਰਨ \sqrt{2z+3}=-z ਵਿੱਚ, z ਲਈ 3 ਨੂੰ ਬਦਲ ਦਿਓ।
3=-3
ਸਪਸ਼ਟ ਕਰੋ। ਮਾਨ z=3 ਸਮੀਕਰਨ ਨੂੰ ਸਤੁੰਸ਼ਟ ਨਹੀਂ ਕਰਦਾ ਕਿਉਂਕਿ ਨੂੰ ਖੱਬੇ ਅਤੇ ਸੱਜੇ ਪਾਸੇ ਵਿਪਰੀਤ ਚਿੰਨ੍ਹ ਹਨ।
\sqrt{2\left(-1\right)+3}=-\left(-1\right)
ਸਮੀਕਰਨ \sqrt{2z+3}=-z ਵਿੱਚ, z ਲਈ -1 ਨੂੰ ਬਦਲ ਦਿਓ।
1=1
ਸਪਸ਼ਟ ਕਰੋ। ਮਾਨ z=-1 ਸਮੀਕਰਨ ਨੂੰ ਸੰਤੁਸ਼ਟ ਕਰਦਾ ਹੈ।
z=-1
ਸਮੀਕਰਨ \sqrt{2z+3}=-z ਦਾ ਇੱਕ ਅਨੋਖਾ ਹਲ ਹੈ।