ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

\sqrt{2x+7}=x-4
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 4 ਨੂੰ ਘਟਾਓ।
\left(\sqrt{2x+7}\right)^{2}=\left(x-4\right)^{2}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਕਰੋ।
2x+7=\left(x-4\right)^{2}
\sqrt{2x+7} ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 2x+7 ਪ੍ਰਾਪਤ ਕਰੋ।
2x+7=x^{2}-8x+16
\left(x-4\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
2x+7-x^{2}=-8x+16
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
2x+7-x^{2}+8x=16
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 8x ਜੋੜੋ।
10x+7-x^{2}=16
10x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2x ਅਤੇ 8x ਨੂੰ ਮਿਲਾਓ।
10x+7-x^{2}-16=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 16 ਨੂੰ ਘਟਾ ਦਿਓ।
10x-9-x^{2}=0
-9 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 7 ਵਿੱਚੋਂ 16 ਨੂੰ ਘਟਾ ਦਿਓ।
-x^{2}+10x-9=0
ਪੋਲੀਨੋਮਿਅਲ ਨੂੰ ਸਟੈਂਡਰਡ ਫਾਰਮ ਵਿੱਚ ਰੱਖਣ ਲਈ ਇਸ ਨੂੰ ਦੁਬਾਰਾ-ਵਿਵਸਥਿਤ ਕਰੋ। ਸੰਖਿਆਵਾਂ ਨੂੰ ਸਭ ਤੋਂ ਵੱਡੀ ਤੋਂ ਸਭ ਤੋਂ ਛੋਟੀ ਪਾਵਰ ਦੀ ਤਰਤੀਬ ਵਿੱਚ ਲਗਾਓ।
a+b=10 ab=-\left(-9\right)=9
ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, ਸਮੂਹ ਬਣਾ ਕੇ ਖੱਬੇ ਪਾਸੇ ਦਾ ਫੈਕਟਰ ਕੱਢੋ। ਪਹਿਲਾਂ, ਖੱਬੇ ਪਾਸੇ ਵਾਲੇ ਨੂੰ -x^{2}+ax+bx-9 ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
1,9 3,3
ਕਿਉਂਕਿ ab ਪਾਜ਼ੇਟਿਵ ਹੈ, a ਅਤੇ b ਦਾ ਸਮਾਨ ਚਿੰਨ੍ਹ ਹੁੰਦਾ ਹੈ। ਕਿਉਂਕਿ a+b ਪਾਜ਼ੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੋਵੇਂ ਪਾਜ਼ੇਟਿਵ ਹੁੰਦੇ ਹਨ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ 9 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
1+9=10 3+3=6
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
a=9 b=1
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ 10 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(-x^{2}+9x\right)+\left(x-9\right)
-x^{2}+10x-9 ਨੂੰ \left(-x^{2}+9x\right)+\left(x-9\right) ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
-x\left(x-9\right)+x-9
-x^{2}+9x ਵਿੱਚੋਂ -x ਫੈਕਟਰ ਕੱਢੋ।
\left(x-9\right)\left(-x+1\right)
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੌਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੋਮਨ ਟਰਮ x-9 ਦਾ ਫੈਕਟਰ ਕੱਢੋ।
x=9 x=1
ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਲਈ, x-9=0 ਅਤੇ -x+1=0 ਨੂੰ ਹੱਲ ਕਰੋ।
\sqrt{2\times 9+7}+4=9
ਸਮੀਕਰਨ \sqrt{2x+7}+4=x ਵਿੱਚ, x ਲਈ 9 ਨੂੰ ਬਦਲ ਦਿਓ।
9=9
ਸਪਸ਼ਟ ਕਰੋ। ਮਾਨ x=9 ਸਮੀਕਰਨ ਨੂੰ ਸੰਤੁਸ਼ਟ ਕਰਦਾ ਹੈ।
\sqrt{2\times 1+7}+4=1
ਸਮੀਕਰਨ \sqrt{2x+7}+4=x ਵਿੱਚ, x ਲਈ 1 ਨੂੰ ਬਦਲ ਦਿਓ।
7=1
ਸਪਸ਼ਟ ਕਰੋ। ਮਾਨ x=1 ਸਮੀਕਰਨ ਨੂੰ ਸਤੁੰਸ਼ਟ ਨਹੀਂ ਕਰਦਾ ਹੈ।
x=9
ਸਮੀਕਰਨ \sqrt{2x+7}=x-4 ਦਾ ਇੱਕ ਅਨੋਖਾ ਹਲ ਹੈ।