x ਲਈ ਹਲ ਕਰੋ
x=10
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\sqrt{2x+4}=2\sqrt{x-4}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ -2\sqrt{x-4} ਨੂੰ ਘਟਾਓ।
\left(\sqrt{2x+4}\right)^{2}=\left(2\sqrt{x-4}\right)^{2}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਕਰੋ।
2x+4=\left(2\sqrt{x-4}\right)^{2}
\sqrt{2x+4} ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 2x+4 ਪ੍ਰਾਪਤ ਕਰੋ।
2x+4=2^{2}\left(\sqrt{x-4}\right)^{2}
\left(2\sqrt{x-4}\right)^{2} ਦਾ ਵਿਸਥਾਰ ਕਰੋ।
2x+4=4\left(\sqrt{x-4}\right)^{2}
2 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 4 ਪ੍ਰਾਪਤ ਕਰੋ।
2x+4=4\left(x-4\right)
\sqrt{x-4} ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ x-4 ਪ੍ਰਾਪਤ ਕਰੋ।
2x+4=4x-16
4 ਨੂੰ x-4 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
2x+4-4x=-16
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 4x ਨੂੰ ਘਟਾ ਦਿਓ।
-2x+4=-16
-2x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2x ਅਤੇ -4x ਨੂੰ ਮਿਲਾਓ।
-2x=-16-4
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 4 ਨੂੰ ਘਟਾ ਦਿਓ।
-2x=-20
-20 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -16 ਵਿੱਚੋਂ 4 ਨੂੰ ਘਟਾ ਦਿਓ।
x=\frac{-20}{-2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -2 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x=10
-20 ਨੂੰ -2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ 10 ਨਿਕਲੇ।
\sqrt{2\times 10+4}-2\sqrt{10-4}=0
ਸਮੀਕਰਨ \sqrt{2x+4}-2\sqrt{x-4}=0 ਵਿੱਚ, x ਲਈ 10 ਨੂੰ ਬਦਲ ਦਿਓ।
0=0
ਸਪਸ਼ਟ ਕਰੋ। ਮਾਨ x=10 ਸਮੀਕਰਨ ਨੂੰ ਸੰਤੁਸ਼ਟ ਕਰਦਾ ਹੈ।
x=10
ਸਮੀਕਰਨ \sqrt{2x+4}=2\sqrt{x-4} ਦਾ ਇੱਕ ਅਨੋਖਾ ਹਲ ਹੈ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}