ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
y ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

\left(\sqrt{\left(x-2\right)^{2}+\left(y-2\right)^{2}}\right)^{2}=\left(\sqrt{\left(x-\left(-2\right)\right)^{2}+\left(y-4\right)^{2}}\right)^{2}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਕਰੋ।
\left(\sqrt{x^{2}-4x+4+\left(y-2\right)^{2}}\right)^{2}=\left(\sqrt{\left(x-\left(-2\right)\right)^{2}+\left(y-4\right)^{2}}\right)^{2}
\left(x-2\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
\left(\sqrt{x^{2}-4x+4+y^{2}-4y+4}\right)^{2}=\left(\sqrt{\left(x-\left(-2\right)\right)^{2}+\left(y-4\right)^{2}}\right)^{2}
\left(y-2\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
\left(\sqrt{x^{2}-4x+8+y^{2}-4y}\right)^{2}=\left(\sqrt{\left(x-\left(-2\right)\right)^{2}+\left(y-4\right)^{2}}\right)^{2}
8 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4 ਅਤੇ 4 ਨੂੰ ਜੋੜੋ।
x^{2}-4x+8+y^{2}-4y=\left(\sqrt{\left(x-\left(-2\right)\right)^{2}+\left(y-4\right)^{2}}\right)^{2}
\sqrt{x^{2}-4x+8+y^{2}-4y} ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ x^{2}-4x+8+y^{2}-4y ਪ੍ਰਾਪਤ ਕਰੋ।
x^{2}-4x+8+y^{2}-4y=\left(\sqrt{\left(x+2\right)^{2}+\left(y-4\right)^{2}}\right)^{2}
-2 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 2 ਹੈ।
x^{2}-4x+8+y^{2}-4y=\left(\sqrt{x^{2}+4x+4+\left(y-4\right)^{2}}\right)^{2}
\left(x+2\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
x^{2}-4x+8+y^{2}-4y=\left(\sqrt{x^{2}+4x+4+y^{2}-8y+16}\right)^{2}
\left(y-4\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
x^{2}-4x+8+y^{2}-4y=\left(\sqrt{x^{2}+4x+20+y^{2}-8y}\right)^{2}
20 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4 ਅਤੇ 16 ਨੂੰ ਜੋੜੋ।
x^{2}-4x+8+y^{2}-4y=x^{2}+4x+20+y^{2}-8y
\sqrt{x^{2}+4x+20+y^{2}-8y} ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ x^{2}+4x+20+y^{2}-8y ਪ੍ਰਾਪਤ ਕਰੋ।
x^{2}-4x+8+y^{2}-4y-x^{2}=4x+20+y^{2}-8y
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
-4x+8+y^{2}-4y=4x+20+y^{2}-8y
0 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x^{2} ਅਤੇ -x^{2} ਨੂੰ ਮਿਲਾਓ।
-4x+8+y^{2}-4y-4x=20+y^{2}-8y
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 4x ਨੂੰ ਘਟਾ ਦਿਓ।
-8x+8+y^{2}-4y=20+y^{2}-8y
-8x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -4x ਅਤੇ -4x ਨੂੰ ਮਿਲਾਓ।
-8x+y^{2}-4y=20+y^{2}-8y-8
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 8 ਨੂੰ ਘਟਾ ਦਿਓ।
-8x+y^{2}-4y=12+y^{2}-8y
12 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 20 ਵਿੱਚੋਂ 8 ਨੂੰ ਘਟਾ ਦਿਓ।
-8x-4y=12+y^{2}-8y-y^{2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ y^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
-8x-4y=12-8y
0 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ y^{2} ਅਤੇ -y^{2} ਨੂੰ ਮਿਲਾਓ।
-8x=12-8y+4y
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 4y ਜੋੜੋ।
-8x=12-4y
-4y ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -8y ਅਤੇ 4y ਨੂੰ ਮਿਲਾਓ।
\frac{-8x}{-8}=\frac{12-4y}{-8}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -8 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x=\frac{12-4y}{-8}
-8 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -8 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x=\frac{y-3}{2}
12-4y ਨੂੰ -8 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
\sqrt{\left(\frac{y-3}{2}-2\right)^{2}+\left(y-2\right)^{2}}=\sqrt{\left(\frac{y-3}{2}-\left(-2\right)\right)^{2}+\left(y-4\right)^{2}}
ਸਮੀਕਰਨ \sqrt{\left(x-2\right)^{2}+\left(y-2\right)^{2}}=\sqrt{\left(x-\left(-2\right)\right)^{2}+\left(y-4\right)^{2}} ਵਿੱਚ, x ਲਈ \frac{y-3}{2} ਨੂੰ ਬਦਲ ਦਿਓ।
\frac{1}{2}\left(65-30y+5y^{2}\right)^{\frac{1}{2}}=\frac{1}{2}\left(65-30y+5y^{2}\right)^{\frac{1}{2}}
ਸਪਸ਼ਟ ਕਰੋ। ਮਾਨ x=\frac{y-3}{2} ਸਮੀਕਰਨ ਨੂੰ ਸੰਤੁਸ਼ਟ ਕਰਦਾ ਹੈ।
x=\frac{y-3}{2}
ਸਮੀਕਰਨ \sqrt{\left(x-2\right)^{2}+\left(y-2\right)^{2}}=\sqrt{\left(y-4\right)^{2}+\left(x-\left(-2\right)\right)^{2}} ਦਾ ਇੱਕ ਅਨੋਖਾ ਹਲ ਹੈ।
\left(\sqrt{\left(x-2\right)^{2}+\left(y-2\right)^{2}}\right)^{2}=\left(\sqrt{\left(x-\left(-2\right)\right)^{2}+\left(y-4\right)^{2}}\right)^{2}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਕਰੋ।
\left(\sqrt{x^{2}-4x+4+\left(y-2\right)^{2}}\right)^{2}=\left(\sqrt{\left(x-\left(-2\right)\right)^{2}+\left(y-4\right)^{2}}\right)^{2}
\left(x-2\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
\left(\sqrt{x^{2}-4x+4+y^{2}-4y+4}\right)^{2}=\left(\sqrt{\left(x-\left(-2\right)\right)^{2}+\left(y-4\right)^{2}}\right)^{2}
\left(y-2\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
\left(\sqrt{x^{2}-4x+8+y^{2}-4y}\right)^{2}=\left(\sqrt{\left(x-\left(-2\right)\right)^{2}+\left(y-4\right)^{2}}\right)^{2}
8 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4 ਅਤੇ 4 ਨੂੰ ਜੋੜੋ।
x^{2}-4x+8+y^{2}-4y=\left(\sqrt{\left(x-\left(-2\right)\right)^{2}+\left(y-4\right)^{2}}\right)^{2}
\sqrt{x^{2}-4x+8+y^{2}-4y} ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ x^{2}-4x+8+y^{2}-4y ਪ੍ਰਾਪਤ ਕਰੋ।
x^{2}-4x+8+y^{2}-4y=\left(\sqrt{\left(x+2\right)^{2}+\left(y-4\right)^{2}}\right)^{2}
-2 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 2 ਹੈ।
x^{2}-4x+8+y^{2}-4y=\left(\sqrt{x^{2}+4x+4+\left(y-4\right)^{2}}\right)^{2}
\left(x+2\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
x^{2}-4x+8+y^{2}-4y=\left(\sqrt{x^{2}+4x+4+y^{2}-8y+16}\right)^{2}
\left(y-4\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
x^{2}-4x+8+y^{2}-4y=\left(\sqrt{x^{2}+4x+20+y^{2}-8y}\right)^{2}
20 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4 ਅਤੇ 16 ਨੂੰ ਜੋੜੋ।
x^{2}-4x+8+y^{2}-4y=x^{2}+4x+20+y^{2}-8y
\sqrt{x^{2}+4x+20+y^{2}-8y} ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ x^{2}+4x+20+y^{2}-8y ਪ੍ਰਾਪਤ ਕਰੋ।
x^{2}-4x+8+y^{2}-4y-y^{2}=x^{2}+4x+20-8y
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ y^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
x^{2}-4x+8-4y=x^{2}+4x+20-8y
0 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ y^{2} ਅਤੇ -y^{2} ਨੂੰ ਮਿਲਾਓ।
x^{2}-4x+8-4y+8y=x^{2}+4x+20
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 8y ਜੋੜੋ।
x^{2}-4x+8+4y=x^{2}+4x+20
4y ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -4y ਅਤੇ 8y ਨੂੰ ਮਿਲਾਓ।
-4x+8+4y=x^{2}+4x+20-x^{2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
-4x+8+4y=4x+20
0 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x^{2} ਅਤੇ -x^{2} ਨੂੰ ਮਿਲਾਓ।
8+4y=4x+20+4x
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 4x ਜੋੜੋ।
8+4y=8x+20
8x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4x ਅਤੇ 4x ਨੂੰ ਮਿਲਾਓ।
4y=8x+20-8
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 8 ਨੂੰ ਘਟਾ ਦਿਓ।
4y=8x+12
12 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 20 ਵਿੱਚੋਂ 8 ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{4y}{4}=\frac{8x+12}{4}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 4 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
y=\frac{8x+12}{4}
4 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 4 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
y=2x+3
8x+12 ਨੂੰ 4 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
\sqrt{\left(x-2\right)^{2}+\left(2x+3-2\right)^{2}}=\sqrt{\left(x-\left(-2\right)\right)^{2}+\left(2x+3-4\right)^{2}}
ਸਮੀਕਰਨ \sqrt{\left(x-2\right)^{2}+\left(y-2\right)^{2}}=\sqrt{\left(x-\left(-2\right)\right)^{2}+\left(y-4\right)^{2}} ਵਿੱਚ, y ਲਈ 2x+3 ਨੂੰ ਬਦਲ ਦਿਓ।
\left(5+5x^{2}\right)^{\frac{1}{2}}=\left(5+5x^{2}\right)^{\frac{1}{2}}
ਸਪਸ਼ਟ ਕਰੋ। ਮਾਨ y=2x+3 ਸਮੀਕਰਨ ਨੂੰ ਸੰਤੁਸ਼ਟ ਕਰਦਾ ਹੈ।
y=2x+3
ਸਮੀਕਰਨ \sqrt{\left(x-2\right)^{2}+\left(y-2\right)^{2}}=\sqrt{\left(y-4\right)^{2}+\left(x-\left(-2\right)\right)^{2}} ਦਾ ਇੱਕ ਅਨੋਖਾ ਹਲ ਹੈ।