ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
ਅੰਤਰ ਦੱਸੋ w.r.t. θ
Tick mark Image
ਮੁਲਾਂਕਣ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

\frac{\mathrm{d}}{\mathrm{d}\theta }(\sin(\theta ))=\left(\lim_{h\to 0}\frac{\sin(\theta +h)-\sin(\theta )}{h}\right)
f\left(x\right) ਫੰਗਸ਼ਨ ਲਈ, ਡੈਰੀਵੇਟਿਵ \frac{f\left(x+h\right)-f\left(x\right)}{h} ਦੀ ਲਿਮਿਟ ਹੁੰਦਾ ਹੈ, ਜਿਵੇਂ h, 0 ਵੱਲ ਜਾਂਦਾ ਹੈ, ਜੇ ਉਹ ਲਿਮਿਟ ਮੌਜੂਦ ਹੋਵੇ।
\lim_{h\to 0}\frac{\sin(h+\theta )-\sin(\theta )}{h}
ਸਾਈਨ ਲਈ ਸਮ ਫਾਰਮੂਲਾ ਵਰਤੋਂ।
\lim_{h\to 0}\frac{\sin(\theta )\left(\cos(h)-1\right)+\cos(\theta )\sin(h)}{h}
\sin(\theta ) ਨੂੰ ਵੱਖਰਾ ਕਰ ਦਿਓ।
\left(\lim_{h\to 0}\sin(\theta )\right)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\left(\lim_{h\to 0}\cos(\theta )\right)\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
ਲਿਮਿਟ ਨੂੰ ਦੁਬਾਰਾ ਲਿਖੋ।
\sin(\theta )\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(\theta )\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
ਲਿਮਿਟਾਂ ਦਾ ਹਿਸਾਬ ਲਗਾਉਂਦੇ ਹੋਏ ਇਹ ਤੱਥ ਵਰਤੋਂ ਕਿ \theta ਇੱਕ ਕੋਂਸਟੈਂਟ ਹੈ, ਕਿਉਂਕਿ h, 0 ਵੱਲ ਜਾਂਦਾ ਹੈ।
\sin(\theta )\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(\theta )
\lim_{\theta \to 0}\frac{\sin(\theta )}{\theta } ਲਿਮਿਟ 1 ਹੁੰਦੀ ਹੈ।
\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)=\left(\lim_{h\to 0}\frac{\left(\cos(h)-1\right)\left(\cos(h)+1\right)}{h\left(\cos(h)+1\right)}\right)
ਲਿਮਿਟ \lim_{h\to 0}\frac{\cos(h)-1}{h} ਦਾ ਮੁਲਾਂਕਣ ਕਰਨ ਲਈ, ਪਹਿਲੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ \cos(h)+1 ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
\lim_{h\to 0}\frac{\left(\cos(h)\right)^{2}-1}{h\left(\cos(h)+1\right)}
\cos(h)+1 ਨੂੰ \cos(h)-1 ਵਾਰ ਗੁਣਾ ਕਰੋ।
\lim_{h\to 0}-\frac{\left(\sin(h)\right)^{2}}{h\left(\cos(h)+1\right)}
ਪਾਯਥਾਗੋਰਿਅਨ ਆਈਡੇਂਟਿਟੀ ਦੀ ਵਰਤੋਂ ਕਰੋ।
\left(\lim_{h\to 0}-\frac{\sin(h)}{h}\right)\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
ਲਿਮਿਟ ਨੂੰ ਦੁਬਾਰਾ ਲਿਖੋ।
-\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
\lim_{\theta \to 0}\frac{\sin(\theta )}{\theta } ਲਿਮਿਟ 1 ਹੁੰਦੀ ਹੈ।
\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)=0
ਇਹ ਤੱਥ ਵਰਤੋਂ ਕਿ \frac{\sin(h)}{\cos(h)+1}, 0 ਤੇ ਲਗਾਤਾਰ ਹੁੰਦਾ ਹੈ।
\cos(\theta )
ਵੈਲਯੂ 0 ਨੂੰ ਐਕਸਪ੍ਰੈਸ਼ਨ \sin(\theta )\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(\theta ) ਵਿੱਚ ਬਦਲੋ।