x ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
x=y\left(\cos(2t)\right)^{-\frac{1}{2}}\left(\sin(t)\right)^{3}
\nexists n_{1}\in \mathrm{Z}\text{ : }t=\frac{\pi n_{1}}{2}+\frac{\pi }{4}
x ਲਈ ਹਲ ਕਰੋ
\left\{\begin{matrix}x=\frac{y\left(\sin(t)\right)^{3}}{\sqrt{\cos(2t)}}\text{, }&\exists n_{3}\in \mathrm{Z}\text{ : }\left(t>\pi n_{3}+\frac{3\pi }{4}\text{ and }t<\pi n_{3}+\frac{5\pi }{4}\right)\\x\in \mathrm{R}\text{, }&y=0\text{ and }\exists n_{2}\in \mathrm{Z}\text{ : }t=\frac{\pi n_{2}}{2}+\frac{\pi }{4}\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }\left(t\geq \pi n_{1}-\frac{\pi }{4}\text{ and }t\leq \pi n_{1}+\frac{\pi }{4}\right)\text{ and }\exists n_{4}\in \mathrm{Z}\text{ : }\left(t>\pi n_{4}-\frac{\pi }{4}\text{ and }t<\pi n_{4}+\frac{\pi }{4}\right)\text{ and }\exists n_{3}\in \mathrm{Z}\text{ : }\left(t>\pi n_{3}+\frac{3\pi }{4}\text{ and }t<\pi n_{3}+\frac{5\pi }{4}\right)\end{matrix}\right.
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}