a, x ਲਈ ਹਲ ਕਰੋ
x = -\frac{4500}{11} = -409\frac{1}{11} \approx -409.090909091
a = -\frac{5400}{11} = -490\frac{10}{11} \approx -490.909090909
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
a=x\times \frac{6}{5}
ਪਹਿਲੇ ਸਮੀਕਰਨ 'ਤੇ ਵਿਚਾਰ ਕਰੋ। 16 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{96}{80} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
a-x\times \frac{6}{5}=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ x\times \frac{6}{5} ਨੂੰ ਘਟਾ ਦਿਓ।
a-\frac{6}{5}x=0
-\frac{6}{5} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -1 ਅਤੇ \frac{6}{5} ਨੂੰ ਗੁਣਾ ਕਰੋ।
60-a=x+960
ਦੂਜੇ ਸਮੀਕਰਨ 'ਤੇ ਵਿਚਾਰ ਕਰੋ। 960 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 10 ਅਤੇ 96 ਨੂੰ ਗੁਣਾ ਕਰੋ।
60-a-x=960
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ x ਨੂੰ ਘਟਾ ਦਿਓ।
-a-x=960-60
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 60 ਨੂੰ ਘਟਾ ਦਿਓ।
-a-x=900
900 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 960 ਵਿੱਚੋਂ 60 ਨੂੰ ਘਟਾ ਦਿਓ।
a-\frac{6}{5}x=0,-a-x=900
ਸਬਸੀਟਿਉਸ਼ਨ ਨੂੰ ਵਰਤ ਰਹੇ ਸਮੀਕਰਨਾਂ ਦੇ ਜੋੜੇ ਨੂੰ ਹਲ ਕਰਨ ਲਈ, ਪਹਿਲੇ ਕਿਸੇ ਇੱਕ ਵੇਰੀਏਬਲ ਲਈ ਕਿਸੇ ਇੱਕ ਸਮੀਕਰਨ ਨੂੰ ਹਲ ਕਰੋ। ਫੇਰ, ਉਸ ਵੇਰੀਏਬਲ ਲਈ ਦੂਜੇ ਸਮੀਕਰਨ ਵਿੱਚ ਨਤੀਜੇ ਨੂੰ ਬਦਲ ਦਿਓ।
a-\frac{6}{5}x=0
ਸਮੀਕਰਨਾਂ ਵਿੱਚੋਂ ਇੱਕ ਨੂੰ ਚੁਣੋ ਅਤੇ ਸਮਾਨ ਚਿੰਨ੍ਹ ਦੇ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ a ਨੂੰ ਅਲੱਗ ਕਰਕੇ ਇਸ ਨੂੰ a ਲਈ ਹੱਲ ਕਰੋ।
a=\frac{6}{5}x
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{6x}{5} ਨੂੰ ਜੋੜੋ।
-\frac{6}{5}x-x=900
ਦੂਜੇ ਸਮੀਕਰਨ -a-x=900 ਵਿੱਚ, a ਲਈ \frac{6x}{5} ਨੂੰ ਬਦਲ ਦਿਓ।
-\frac{11}{5}x=900
-\frac{6x}{5} ਨੂੰ -x ਵਿੱਚ ਜੋੜੋ।
x=-\frac{4500}{11}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -\frac{11}{5} ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ, ਜੋ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ ਫ੍ਰੈਕਸ਼ਨ (ਉਪਅੰਸ਼) ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ (ਅੰਕ-ਵਿਉਂਤਕ੍ਰਮ) ਦੇ ਨਾਲ ਗੁਣਾ ਕਰਨ ਦੇ ਸਮਾਨ ਹੁੰਦਾ ਹੈ।
a=\frac{6}{5}\left(-\frac{4500}{11}\right)
a=\frac{6}{5}x ਵਿੱਚ x ਲਈ -\frac{4500}{11} ਨੂੰ ਲਗਾ ਦਿਓ। ਕਿਉਂਕਿ ਇਸਦੇ ਨਤੀਜੇ ਵਜੋਂ ਮਿਲਣ ਵਾਲੇ ਸਮੀਕਰਨ ਵਿੱਤ ਸਿਰਫ਼ ਇੱਕ ਵੇਰੀਏਬਲ ਹੁੰਦਾ ਹੈ, ਤੁਸੀਂ ਸਿੱਧਾ a ਲਈ ਹਲ ਕਰ ਸਕਦੇ ਹੋ।
a=-\frac{5400}{11}
ਨਿਉਮਰੇਟਰ ਟਾਇਮਸ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਟਾਈਮਸ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਗੁਣਾ ਕਰਕੇ \frac{6}{5} ਟਾਈਮਸ -\frac{4500}{11} ਨੂੰ ਗੁਣਾ ਕਰੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
a=-\frac{5400}{11},x=-\frac{4500}{11}
ਸਿਸਟਮ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
a=x\times \frac{6}{5}
ਪਹਿਲੇ ਸਮੀਕਰਨ 'ਤੇ ਵਿਚਾਰ ਕਰੋ। 16 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{96}{80} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
a-x\times \frac{6}{5}=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ x\times \frac{6}{5} ਨੂੰ ਘਟਾ ਦਿਓ।
a-\frac{6}{5}x=0
-\frac{6}{5} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -1 ਅਤੇ \frac{6}{5} ਨੂੰ ਗੁਣਾ ਕਰੋ।
60-a=x+960
ਦੂਜੇ ਸਮੀਕਰਨ 'ਤੇ ਵਿਚਾਰ ਕਰੋ। 960 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 10 ਅਤੇ 96 ਨੂੰ ਗੁਣਾ ਕਰੋ।
60-a-x=960
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ x ਨੂੰ ਘਟਾ ਦਿਓ।
-a-x=960-60
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 60 ਨੂੰ ਘਟਾ ਦਿਓ।
-a-x=900
900 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 960 ਵਿੱਚੋਂ 60 ਨੂੰ ਘਟਾ ਦਿਓ।
a-\frac{6}{5}x=0,-a-x=900
ਸਮੀਕਰਨਾਂ ਨੂੰ ਸਟੈਂਡਰਡ ਫਾਰਮ ਵਿੱਚ ਰੱਖੋ ਅਤੇ ਫੇਰ, ਸਮੀਕਰਨਾਂ ਦੇ ਸਿਸਟਮ ਨੂੰ ਹਲ ਕਰਨ ਲਈ ਮੈਟ੍ਰਿਕਸ ਵਰਤੋਂ।
\left(\begin{matrix}1&-\frac{6}{5}\\-1&-1\end{matrix}\right)\left(\begin{matrix}a\\x\end{matrix}\right)=\left(\begin{matrix}0\\900\end{matrix}\right)
ਸਮੀਕਰਨਾਂ ਨੂੰ ਮੈਟ੍ਰਿਕਸ ਰੂਪ ਵਿੱਚ ਲਿਖੋ।
inverse(\left(\begin{matrix}1&-\frac{6}{5}\\-1&-1\end{matrix}\right))\left(\begin{matrix}1&-\frac{6}{5}\\-1&-1\end{matrix}\right)\left(\begin{matrix}a\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{6}{5}\\-1&-1\end{matrix}\right))\left(\begin{matrix}0\\900\end{matrix}\right)
ਸਮੀਕਰਨ ਨੂੰ \left(\begin{matrix}1&-\frac{6}{5}\\-1&-1\end{matrix}\right) ਦੇ ਉਲਟ ਮੈਟ੍ਰਿਕਸ ਦੇ ਨਾਲ ਗੁਣਾ ਕਰਨ ਦਿਓ।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{6}{5}\\-1&-1\end{matrix}\right))\left(\begin{matrix}0\\900\end{matrix}\right)
ਮੈਟ੍ਰਿਕਸ ਅਤੇ ਇਸਦੇ ਉਲਟ ਦਾ ਗੁਣਾ ਆਈਡੇਂਟਿਟੀ ਮੈਟ੍ਰਿਕਸ ਹੁੰਦਾ ਹੈ।
\left(\begin{matrix}a\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{6}{5}\\-1&-1\end{matrix}\right))\left(\begin{matrix}0\\900\end{matrix}\right)
ਬਰਾਬਰ ਦੇ ਚਿੰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ ਮੈਟ੍ਰਿਸਿਸ ਨੂੰ ਗੁਣਾ ਕਰੋ।
\left(\begin{matrix}a\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-\left(-\frac{6}{5}\left(-1\right)\right)}&-\frac{-\frac{6}{5}}{-1-\left(-\frac{6}{5}\left(-1\right)\right)}\\-\frac{-1}{-1-\left(-\frac{6}{5}\left(-1\right)\right)}&\frac{1}{-1-\left(-\frac{6}{5}\left(-1\right)\right)}\end{matrix}\right)\left(\begin{matrix}0\\900\end{matrix}\right)
ਮੈਟ੍ਰਿਕਸ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) ਲਈ, ਉਲਟਕ੍ਰਮ ਮੈਟ੍ਰਿਕਸ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ਹੈ, ਇਸ ਲਈ ਮੈਟ੍ਰਿਕਸ ਸਮੀਕਰਨ ਨੂੰ ਇੱਕ ਮੈਟ੍ਰਿਕਸ ਗੁਣਾ ਦੇ ਸਵਾਲ ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ।
\left(\begin{matrix}a\\x\end{matrix}\right)=\left(\begin{matrix}\frac{5}{11}&-\frac{6}{11}\\-\frac{5}{11}&-\frac{5}{11}\end{matrix}\right)\left(\begin{matrix}0\\900\end{matrix}\right)
ਗਿਣਤੀ ਕਰੋ।
\left(\begin{matrix}a\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{11}\times 900\\-\frac{5}{11}\times 900\end{matrix}\right)
ਮੈਟ੍ਰਿਸਿਸ ਨੂੰ ਗੁਣਾ ਕਰੋ।
\left(\begin{matrix}a\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{5400}{11}\\-\frac{4500}{11}\end{matrix}\right)
ਗਿਣਤੀ ਕਰੋ।
a=-\frac{5400}{11},x=-\frac{4500}{11}
ਮੈਟ੍ਰਿਕਸ ਐਲੀਮੈਂਟਾ (ਤੱਤਾਂ) a ਅਤੇ x ਨੂੰ ਬਾਹਰ ਕੱਢੋ।
a=x\times \frac{6}{5}
ਪਹਿਲੇ ਸਮੀਕਰਨ 'ਤੇ ਵਿਚਾਰ ਕਰੋ। 16 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{96}{80} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
a-x\times \frac{6}{5}=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ x\times \frac{6}{5} ਨੂੰ ਘਟਾ ਦਿਓ।
a-\frac{6}{5}x=0
-\frac{6}{5} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -1 ਅਤੇ \frac{6}{5} ਨੂੰ ਗੁਣਾ ਕਰੋ।
60-a=x+960
ਦੂਜੇ ਸਮੀਕਰਨ 'ਤੇ ਵਿਚਾਰ ਕਰੋ। 960 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 10 ਅਤੇ 96 ਨੂੰ ਗੁਣਾ ਕਰੋ।
60-a-x=960
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ x ਨੂੰ ਘਟਾ ਦਿਓ।
-a-x=960-60
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 60 ਨੂੰ ਘਟਾ ਦਿਓ।
-a-x=900
900 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 960 ਵਿੱਚੋਂ 60 ਨੂੰ ਘਟਾ ਦਿਓ।
a-\frac{6}{5}x=0,-a-x=900
ਬਾਹਰ ਕਰਕੇ ਹਲ ਕਰਨ ਦੇ ਲਈ, ਕਿਸੇ ਇੱਕ ਵੇਰੀਏਬਲ ਦਾ ਕੌਫੀਸ਼ਿਏਂਟ ਦੋਵੇਂ ਸਮੀਕਰਨਾਂ ਵਿੱਚ ਸਮਾਨ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ, ਤਾਂ ਜੋ ਜਦੋਂ ਇੱਕ ਸਮੀਕਰਨ ਨੂੰ ਦੂਜੇ ਵਿੱਚੋਂ ਘਟਾਇਆ ਜਾਵੇ ਤਾਂ ਵੇਰੀਏਬਲ ਰੱਦ ਹੋ ਜਾਵੇਗਾ।
-a-\left(-\frac{6}{5}x\right)=0,-a-x=900
a ਅਤੇ -a ਨੂੰ ਸਮਾਨ ਬਣਾਉਣ ਲਈ, ਪਹਿਲੇ ਸਮੀਕਰਨ ਦੇ ਹਰ ਪਾਸੇ ਉੱਤੇ ਸਾਰੀਆਂ ਸੰਖਿਆਵਾਂ ਨੂੰ -1 ਦੇ ਨਾਲ ਅਤੇ ਦੂਜੇ ਦੇ ਹਰ ਪਾਸੇ ਉੱਤੇ ਸਾਰੀਆਂ ਸੰਖਿਆਵਾਂ ਨੂੰ 1 ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
-a+\frac{6}{5}x=0,-a-x=900
ਸਪਸ਼ਟ ਕਰੋ।
-a+a+\frac{6}{5}x+x=-900
ਸਮਾਨ ਚਿੰਨ੍ਹ ਦੇ ਹਰ ਪਾਸੇ ਉੱਤੇ ਸਮਾਨ ਸੰਖਿਆਵਾਂ ਨੂੰ ਘਟਾ ਕੇ -a+\frac{6}{5}x=0 ਵਿੱਚੋਂ -a-x=900 ਨੂੰ ਘਟਾ ਦਿਓ।
\frac{6}{5}x+x=-900
-a ਨੂੰ a ਵਿੱਚ ਜੋੜੋ। -a ਅਤੇ a ਸ਼ਰਤਾਂ ਰੱਦ ਹੋ ਜਾਂਦੀਆਂ ਹਨ, ਇੱਕ ਸਮੀਕਰਨ ਬਚ ਜਾਂਦਾ ਹੈ ਜਿਸ ਦੇ ਨਾਲ ਸਿਰਫ਼ ਇੱਕ ਵੇਰੀਏਬਲ ਹੁੰਦਾ ਹੈ ਜਿਸ ਨੂੰ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\frac{11}{5}x=-900
\frac{6x}{5} ਨੂੰ x ਵਿੱਚ ਜੋੜੋ।
x=-\frac{4500}{11}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ \frac{11}{5} ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ, ਜੋ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ ਫ੍ਰੈਕਸ਼ਨ (ਉਪਅੰਸ਼) ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ (ਅੰਕ-ਵਿਉਂਤਕ੍ਰਮ) ਦੇ ਨਾਲ ਗੁਣਾ ਕਰਨ ਦੇ ਸਮਾਨ ਹੁੰਦਾ ਹੈ।
-a-\left(-\frac{4500}{11}\right)=900
-a-x=900 ਵਿੱਚ x ਲਈ -\frac{4500}{11} ਨੂੰ ਲਗਾ ਦਿਓ। ਕਿਉਂਕਿ ਇਸਦੇ ਨਤੀਜੇ ਵਜੋਂ ਮਿਲਣ ਵਾਲੇ ਸਮੀਕਰਨ ਵਿੱਤ ਸਿਰਫ਼ ਇੱਕ ਵੇਰੀਏਬਲ ਹੁੰਦਾ ਹੈ, ਤੁਸੀਂ ਸਿੱਧਾ a ਲਈ ਹਲ ਕਰ ਸਕਦੇ ਹੋ।
-a=\frac{5400}{11}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \frac{4500}{11} ਨੂੰ ਘਟਾਓ।
a=-\frac{5400}{11}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -1 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
a=-\frac{5400}{11},x=-\frac{4500}{11}
ਸਿਸਟਮ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}