ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
a, x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

a=x\times 16
ਪਹਿਲੇ ਸਮੀਕਰਨ 'ਤੇ ਵਿਚਾਰ ਕਰੋ। 96 ਨੂੰ 6 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ 16 ਨਿਕਲੇ।
a-x\times 16=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ x\times 16 ਨੂੰ ਘਟਾ ਦਿਓ।
a-16x=0
-16 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -1 ਅਤੇ 16 ਨੂੰ ਗੁਣਾ ਕਰੋ।
160-a=x+10\times 16\times 0
ਦੂਜੇ ਸਮੀਕਰਨ 'ਤੇ ਵਿਚਾਰ ਕਰੋ। 96 ਨੂੰ 6 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ 16 ਨਿਕਲੇ।
160-a=x+160\times 0
160 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 10 ਅਤੇ 16 ਨੂੰ ਗੁਣਾ ਕਰੋ।
160-a=x+0
0 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 160 ਅਤੇ 0 ਨੂੰ ਗੁਣਾ ਕਰੋ।
160-a=x
ਸਿਫਰ ਵਿੱਚ ਜੋੜੀ ਗਈ ਰਕਮ ਦਾ ਜਵਾਬ ਉਹੀ ਰਕਮ ਹੁੰਦੀ ਹੈ।
160-a-x=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ x ਨੂੰ ਘਟਾ ਦਿਓ।
-a-x=-160
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 160 ਨੂੰ ਘਟਾ ਦਿਓ। ਸਿਫਰ ਵਿੱਚੋ ਘਟਾਈ ਗਈ ਰਕਮ ਦਾ ਜਵਾਬ ਉਹੀ ਰਕਮ ਹੁੰਦੀ ਹੈ।
a-16x=0,-a-x=-160
ਸਬਸੀਟਿਉਸ਼ਨ ਨੂੰ ਵਰਤ ਰਹੇ ਸਮੀਕਰਨਾਂ ਦੇ ਜੋੜੇ ਨੂੰ ਹਲ ਕਰਨ ਲਈ, ਪਹਿਲੇ ਕਿਸੇ ਇੱਕ ਵੇਰੀਏਬਲ ਲਈ ਕਿਸੇ ਇੱਕ ਸਮੀਕਰਨ ਨੂੰ ਹਲ ਕਰੋ। ਫੇਰ, ਉਸ ਵੇਰੀਏਬਲ ਲਈ ਦੂਜੇ ਸਮੀਕਰਨ ਵਿੱਚ ਨਤੀਜੇ ਨੂੰ ਬਦਲ ਦਿਓ।
a-16x=0
ਸਮੀਕਰਨਾਂ ਵਿੱਚੋਂ ਇੱਕ ਨੂੰ ਚੁਣੋ ਅਤੇ ਸਮਾਨ ਚਿੰਨ੍ਹ ਦੇ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ a ਨੂੰ ਅਲੱਗ ਕਰਕੇ ਇਸ ਨੂੰ a ਲਈ ਹੱਲ ਕਰੋ।
a=16x
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 16x ਨੂੰ ਜੋੜੋ।
-16x-x=-160
ਦੂਜੇ ਸਮੀਕਰਨ -a-x=-160 ਵਿੱਚ, a ਲਈ 16x ਨੂੰ ਬਦਲ ਦਿਓ।
-17x=-160
-16x ਨੂੰ -x ਵਿੱਚ ਜੋੜੋ।
x=\frac{160}{17}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -17 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
a=16\times \frac{160}{17}
a=16x ਵਿੱਚ x ਲਈ \frac{160}{17} ਨੂੰ ਲਗਾ ਦਿਓ। ਕਿਉਂਕਿ ਇਸਦੇ ਨਤੀਜੇ ਵਜੋਂ ਮਿਲਣ ਵਾਲੇ ਸਮੀਕਰਨ ਵਿੱਤ ਸਿਰਫ਼ ਇੱਕ ਵੇਰੀਏਬਲ ਹੁੰਦਾ ਹੈ, ਤੁਸੀਂ ਸਿੱਧਾ a ਲਈ ਹਲ ਕਰ ਸਕਦੇ ਹੋ।
a=\frac{2560}{17}
16 ਨੂੰ \frac{160}{17} ਵਾਰ ਗੁਣਾ ਕਰੋ।
a=\frac{2560}{17},x=\frac{160}{17}
ਸਿਸਟਮ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
a=x\times 16
ਪਹਿਲੇ ਸਮੀਕਰਨ 'ਤੇ ਵਿਚਾਰ ਕਰੋ। 96 ਨੂੰ 6 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ 16 ਨਿਕਲੇ।
a-x\times 16=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ x\times 16 ਨੂੰ ਘਟਾ ਦਿਓ।
a-16x=0
-16 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -1 ਅਤੇ 16 ਨੂੰ ਗੁਣਾ ਕਰੋ।
160-a=x+10\times 16\times 0
ਦੂਜੇ ਸਮੀਕਰਨ 'ਤੇ ਵਿਚਾਰ ਕਰੋ। 96 ਨੂੰ 6 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ 16 ਨਿਕਲੇ।
160-a=x+160\times 0
160 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 10 ਅਤੇ 16 ਨੂੰ ਗੁਣਾ ਕਰੋ।
160-a=x+0
0 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 160 ਅਤੇ 0 ਨੂੰ ਗੁਣਾ ਕਰੋ।
160-a=x
ਸਿਫਰ ਵਿੱਚ ਜੋੜੀ ਗਈ ਰਕਮ ਦਾ ਜਵਾਬ ਉਹੀ ਰਕਮ ਹੁੰਦੀ ਹੈ।
160-a-x=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ x ਨੂੰ ਘਟਾ ਦਿਓ।
-a-x=-160
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 160 ਨੂੰ ਘਟਾ ਦਿਓ। ਸਿਫਰ ਵਿੱਚੋ ਘਟਾਈ ਗਈ ਰਕਮ ਦਾ ਜਵਾਬ ਉਹੀ ਰਕਮ ਹੁੰਦੀ ਹੈ।
a-16x=0,-a-x=-160
ਸਮੀਕਰਨਾਂ ਨੂੰ ਸਟੈਂਡਰਡ ਫਾਰਮ ਵਿੱਚ ਰੱਖੋ ਅਤੇ ਫੇਰ, ਸਮੀਕਰਨਾਂ ਦੇ ਸਿਸਟਮ ਨੂੰ ਹਲ ਕਰਨ ਲਈ ਮੈਟ੍ਰਿਕਸ ਵਰਤੋਂ।
\left(\begin{matrix}1&-16\\-1&-1\end{matrix}\right)\left(\begin{matrix}a\\x\end{matrix}\right)=\left(\begin{matrix}0\\-160\end{matrix}\right)
ਸਮੀਕਰਨਾਂ ਨੂੰ ਮੈਟ੍ਰਿਕਸ ਰੂਪ ਵਿੱਚ ਲਿਖੋ।
inverse(\left(\begin{matrix}1&-16\\-1&-1\end{matrix}\right))\left(\begin{matrix}1&-16\\-1&-1\end{matrix}\right)\left(\begin{matrix}a\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-16\\-1&-1\end{matrix}\right))\left(\begin{matrix}0\\-160\end{matrix}\right)
ਸਮੀਕਰਨ ਨੂੰ \left(\begin{matrix}1&-16\\-1&-1\end{matrix}\right) ਦੇ ਉਲਟ ਮੈਟ੍ਰਿਕਸ ਦੇ ਨਾਲ ਗੁਣਾ ਕਰਨ ਦਿਓ।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-16\\-1&-1\end{matrix}\right))\left(\begin{matrix}0\\-160\end{matrix}\right)
ਮੈਟ੍ਰਿਕਸ ਅਤੇ ਇਸਦੇ ਉਲਟ ਦਾ ਗੁਣਾ ਆਈਡੇਂਟਿਟੀ ਮੈਟ੍ਰਿਕਸ ਹੁੰਦਾ ਹੈ।
\left(\begin{matrix}a\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-16\\-1&-1\end{matrix}\right))\left(\begin{matrix}0\\-160\end{matrix}\right)
ਬਰਾਬਰ ਦੇ ਚਿੰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ ਮੈਟ੍ਰਿਸਿਸ ਨੂੰ ਗੁਣਾ ਕਰੋ।
\left(\begin{matrix}a\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-\left(-16\left(-1\right)\right)}&-\frac{-16}{-1-\left(-16\left(-1\right)\right)}\\-\frac{-1}{-1-\left(-16\left(-1\right)\right)}&\frac{1}{-1-\left(-16\left(-1\right)\right)}\end{matrix}\right)\left(\begin{matrix}0\\-160\end{matrix}\right)
ਮੈਟ੍ਰਿਕਸ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) ਲਈ, ਉਲਟਕ੍ਰਮ ਮੈਟ੍ਰਿਕਸ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ਹੈ, ਇਸ ਲਈ ਮੈਟ੍ਰਿਕਸ ਸਮੀਕਰਨ ਨੂੰ ਇੱਕ ਮੈਟ੍ਰਿਕਸ ਗੁਣਾ ਦੇ ਸਵਾਲ ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ।
\left(\begin{matrix}a\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{17}&-\frac{16}{17}\\-\frac{1}{17}&-\frac{1}{17}\end{matrix}\right)\left(\begin{matrix}0\\-160\end{matrix}\right)
ਗਿਣਤੀ ਕਰੋ।
\left(\begin{matrix}a\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{16}{17}\left(-160\right)\\-\frac{1}{17}\left(-160\right)\end{matrix}\right)
ਮੈਟ੍ਰਿਸਿਸ ਨੂੰ ਗੁਣਾ ਕਰੋ।
\left(\begin{matrix}a\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2560}{17}\\\frac{160}{17}\end{matrix}\right)
ਗਿਣਤੀ ਕਰੋ।
a=\frac{2560}{17},x=\frac{160}{17}
ਮੈਟ੍ਰਿਕਸ ਐਲੀਮੈਂਟਾ (ਤੱਤਾਂ) a ਅਤੇ x ਨੂੰ ਬਾਹਰ ਕੱਢੋ।
a=x\times 16
ਪਹਿਲੇ ਸਮੀਕਰਨ 'ਤੇ ਵਿਚਾਰ ਕਰੋ। 96 ਨੂੰ 6 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ 16 ਨਿਕਲੇ।
a-x\times 16=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ x\times 16 ਨੂੰ ਘਟਾ ਦਿਓ।
a-16x=0
-16 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -1 ਅਤੇ 16 ਨੂੰ ਗੁਣਾ ਕਰੋ।
160-a=x+10\times 16\times 0
ਦੂਜੇ ਸਮੀਕਰਨ 'ਤੇ ਵਿਚਾਰ ਕਰੋ। 96 ਨੂੰ 6 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ 16 ਨਿਕਲੇ।
160-a=x+160\times 0
160 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 10 ਅਤੇ 16 ਨੂੰ ਗੁਣਾ ਕਰੋ।
160-a=x+0
0 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 160 ਅਤੇ 0 ਨੂੰ ਗੁਣਾ ਕਰੋ।
160-a=x
ਸਿਫਰ ਵਿੱਚ ਜੋੜੀ ਗਈ ਰਕਮ ਦਾ ਜਵਾਬ ਉਹੀ ਰਕਮ ਹੁੰਦੀ ਹੈ।
160-a-x=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ x ਨੂੰ ਘਟਾ ਦਿਓ।
-a-x=-160
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 160 ਨੂੰ ਘਟਾ ਦਿਓ। ਸਿਫਰ ਵਿੱਚੋ ਘਟਾਈ ਗਈ ਰਕਮ ਦਾ ਜਵਾਬ ਉਹੀ ਰਕਮ ਹੁੰਦੀ ਹੈ।
a-16x=0,-a-x=-160
ਬਾਹਰ ਕਰਕੇ ਹਲ ਕਰਨ ਦੇ ਲਈ, ਕਿਸੇ ਇੱਕ ਵੇਰੀਏਬਲ ਦਾ ਕੌਫੀਸ਼ਿਏਂਟ ਦੋਵੇਂ ਸਮੀਕਰਨਾਂ ਵਿੱਚ ਸਮਾਨ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ, ਤਾਂ ਜੋ ਜਦੋਂ ਇੱਕ ਸਮੀਕਰਨ ਨੂੰ ਦੂਜੇ ਵਿੱਚੋਂ ਘਟਾਇਆ ਜਾਵੇ ਤਾਂ ਵੇਰੀਏਬਲ ਰੱਦ ਹੋ ਜਾਵੇਗਾ।
-a-\left(-16x\right)=0,-a-x=-160
a ਅਤੇ -a ਨੂੰ ਸਮਾਨ ਬਣਾਉਣ ਲਈ, ਪਹਿਲੇ ਸਮੀਕਰਨ ਦੇ ਹਰ ਪਾਸੇ ਉੱਤੇ ਸਾਰੀਆਂ ਸੰਖਿਆਵਾਂ ਨੂੰ -1 ਦੇ ਨਾਲ ਅਤੇ ਦੂਜੇ ਦੇ ਹਰ ਪਾਸੇ ਉੱਤੇ ਸਾਰੀਆਂ ਸੰਖਿਆਵਾਂ ਨੂੰ 1 ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
-a+16x=0,-a-x=-160
ਸਪਸ਼ਟ ਕਰੋ।
-a+a+16x+x=160
ਸਮਾਨ ਚਿੰਨ੍ਹ ਦੇ ਹਰ ਪਾਸੇ ਉੱਤੇ ਸਮਾਨ ਸੰਖਿਆਵਾਂ ਨੂੰ ਘਟਾ ਕੇ -a+16x=0 ਵਿੱਚੋਂ -a-x=-160 ਨੂੰ ਘਟਾ ਦਿਓ।
16x+x=160
-a ਨੂੰ a ਵਿੱਚ ਜੋੜੋ। -a ਅਤੇ a ਸ਼ਰਤਾਂ ਰੱਦ ਹੋ ਜਾਂਦੀਆਂ ਹਨ, ਇੱਕ ਸਮੀਕਰਨ ਬਚ ਜਾਂਦਾ ਹੈ ਜਿਸ ਦੇ ਨਾਲ ਸਿਰਫ਼ ਇੱਕ ਵੇਰੀਏਬਲ ਹੁੰਦਾ ਹੈ ਜਿਸ ਨੂੰ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
17x=160
16x ਨੂੰ x ਵਿੱਚ ਜੋੜੋ।
x=\frac{160}{17}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 17 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
-a-\frac{160}{17}=-160
-a-x=-160 ਵਿੱਚ x ਲਈ \frac{160}{17} ਨੂੰ ਲਗਾ ਦਿਓ। ਕਿਉਂਕਿ ਇਸਦੇ ਨਤੀਜੇ ਵਜੋਂ ਮਿਲਣ ਵਾਲੇ ਸਮੀਕਰਨ ਵਿੱਤ ਸਿਰਫ਼ ਇੱਕ ਵੇਰੀਏਬਲ ਹੁੰਦਾ ਹੈ, ਤੁਸੀਂ ਸਿੱਧਾ a ਲਈ ਹਲ ਕਰ ਸਕਦੇ ਹੋ।
-a=-\frac{2560}{17}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{160}{17} ਨੂੰ ਜੋੜੋ।
a=\frac{2560}{17}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -1 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
a=\frac{2560}{17},x=\frac{160}{17}
ਸਿਸਟਮ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।