ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x, y ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

950x-120y=13,-120x+490y=-1
ਸਬਸੀਟਿਉਸ਼ਨ ਨੂੰ ਵਰਤ ਰਹੇ ਸਮੀਕਰਨਾਂ ਦੇ ਜੋੜੇ ਨੂੰ ਹਲ ਕਰਨ ਲਈ, ਪਹਿਲੇ ਕਿਸੇ ਇੱਕ ਵੇਰੀਏਬਲ ਲਈ ਕਿਸੇ ਇੱਕ ਸਮੀਕਰਨ ਨੂੰ ਹਲ ਕਰੋ। ਫੇਰ, ਉਸ ਵੇਰੀਏਬਲ ਲਈ ਦੂਜੇ ਸਮੀਕਰਨ ਵਿੱਚ ਨਤੀਜੇ ਨੂੰ ਬਦਲ ਦਿਓ।
950x-120y=13
ਸਮੀਕਰਨਾਂ ਵਿੱਚੋਂ ਇੱਕ ਨੂੰ ਚੁਣੋ ਅਤੇ ਸਮਾਨ ਚਿੰਨ੍ਹ ਦੇ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ x ਨੂੰ ਅਲੱਗ ਕਰਕੇ ਇਸ ਨੂੰ x ਲਈ ਹੱਲ ਕਰੋ।
950x=120y+13
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 120y ਨੂੰ ਜੋੜੋ।
x=\frac{1}{950}\left(120y+13\right)
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 950 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x=\frac{12}{95}y+\frac{13}{950}
\frac{1}{950} ਨੂੰ 120y+13 ਵਾਰ ਗੁਣਾ ਕਰੋ।
-120\left(\frac{12}{95}y+\frac{13}{950}\right)+490y=-1
ਦੂਜੇ ਸਮੀਕਰਨ -120x+490y=-1 ਵਿੱਚ, x ਲਈ \frac{12y}{95}+\frac{13}{950} ਨੂੰ ਬਦਲ ਦਿਓ।
-\frac{288}{19}y-\frac{156}{95}+490y=-1
-120 ਨੂੰ \frac{12y}{95}+\frac{13}{950} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{9022}{19}y-\frac{156}{95}=-1
-\frac{288y}{19} ਨੂੰ 490y ਵਿੱਚ ਜੋੜੋ।
\frac{9022}{19}y=\frac{61}{95}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{156}{95} ਨੂੰ ਜੋੜੋ।
y=\frac{61}{45110}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ \frac{9022}{19} ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ, ਜੋ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ ਫ੍ਰੈਕਸ਼ਨ (ਉਪਅੰਸ਼) ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ (ਅੰਕ-ਵਿਉਂਤਕ੍ਰਮ) ਦੇ ਨਾਲ ਗੁਣਾ ਕਰਨ ਦੇ ਸਮਾਨ ਹੁੰਦਾ ਹੈ।
x=\frac{12}{95}\times \frac{61}{45110}+\frac{13}{950}
x=\frac{12}{95}y+\frac{13}{950} ਵਿੱਚ y ਲਈ \frac{61}{45110} ਨੂੰ ਲਗਾ ਦਿਓ। ਕਿਉਂਕਿ ਇਸਦੇ ਨਤੀਜੇ ਵਜੋਂ ਮਿਲਣ ਵਾਲੇ ਸਮੀਕਰਨ ਵਿੱਤ ਸਿਰਫ਼ ਇੱਕ ਵੇਰੀਏਬਲ ਹੁੰਦਾ ਹੈ, ਤੁਸੀਂ ਸਿੱਧਾ x ਲਈ ਹਲ ਕਰ ਸਕਦੇ ਹੋ।
x=\frac{366}{2142725}+\frac{13}{950}
ਨਿਉਮਰੇਟਰ ਟਾਇਮਸ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਟਾਈਮਸ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਗੁਣਾ ਕਰਕੇ \frac{12}{95} ਟਾਈਮਸ \frac{61}{45110} ਨੂੰ ਗੁਣਾ ਕਰੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
x=\frac{125}{9022}
ਸਾਂਝਾ ਡਿਨੋਮੀਨੇਟਰ(ਹੇਠਲੀ ਸੰਖਿਆ) ਲੱਭ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ(ਉੱਤਲੀ ਸੰਖਿਆ) ਨੂੰ ਜੋੜ ਕੇ \frac{13}{950} ਨੂੰ \frac{366}{2142725} ਵਿੱਚ ਜੋੜੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
x=\frac{125}{9022},y=\frac{61}{45110}
ਸਿਸਟਮ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
950x-120y=13,-120x+490y=-1
ਸਮੀਕਰਨਾਂ ਨੂੰ ਸਟੈਂਡਰਡ ਫਾਰਮ ਵਿੱਚ ਰੱਖੋ ਅਤੇ ਫੇਰ, ਸਮੀਕਰਨਾਂ ਦੇ ਸਿਸਟਮ ਨੂੰ ਹਲ ਕਰਨ ਲਈ ਮੈਟ੍ਰਿਕਸ ਵਰਤੋਂ।
\left(\begin{matrix}950&-120\\-120&490\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}13\\-1\end{matrix}\right)
ਸਮੀਕਰਨਾਂ ਨੂੰ ਮੈਟ੍ਰਿਕਸ ਰੂਪ ਵਿੱਚ ਲਿਖੋ।
inverse(\left(\begin{matrix}950&-120\\-120&490\end{matrix}\right))\left(\begin{matrix}950&-120\\-120&490\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}950&-120\\-120&490\end{matrix}\right))\left(\begin{matrix}13\\-1\end{matrix}\right)
ਸਮੀਕਰਨ ਨੂੰ \left(\begin{matrix}950&-120\\-120&490\end{matrix}\right) ਦੇ ਉਲਟ ਮੈਟ੍ਰਿਕਸ ਦੇ ਨਾਲ ਗੁਣਾ ਕਰਨ ਦਿਓ।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}950&-120\\-120&490\end{matrix}\right))\left(\begin{matrix}13\\-1\end{matrix}\right)
ਮੈਟ੍ਰਿਕਸ ਅਤੇ ਇਸਦੇ ਉਲਟ ਦਾ ਗੁਣਾ ਆਈਡੇਂਟਿਟੀ ਮੈਟ੍ਰਿਕਸ ਹੁੰਦਾ ਹੈ।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}950&-120\\-120&490\end{matrix}\right))\left(\begin{matrix}13\\-1\end{matrix}\right)
ਬਰਾਬਰ ਦੇ ਚਿੰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ ਮੈਟ੍ਰਿਸਿਸ ਨੂੰ ਗੁਣਾ ਕਰੋ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{490}{950\times 490-\left(-120\left(-120\right)\right)}&-\frac{-120}{950\times 490-\left(-120\left(-120\right)\right)}\\-\frac{-120}{950\times 490-\left(-120\left(-120\right)\right)}&\frac{950}{950\times 490-\left(-120\left(-120\right)\right)}\end{matrix}\right)\left(\begin{matrix}13\\-1\end{matrix}\right)
ਮੈਟ੍ਰਿਕਸ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) ਲਈ, ਉਲਟਕ੍ਰਮ ਮੈਟ੍ਰਿਕਸ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ਹੈ, ਇਸ ਲਈ ਮੈਟ੍ਰਿਕਸ ਸਮੀਕਰਨ ਨੂੰ ਇੱਕ ਮੈਟ੍ਰਿਕਸ ਗੁਣਾ ਦੇ ਸਵਾਲ ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{49}{45110}&\frac{6}{22555}\\\frac{6}{22555}&\frac{19}{9022}\end{matrix}\right)\left(\begin{matrix}13\\-1\end{matrix}\right)
ਗਿਣਤੀ ਕਰੋ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{49}{45110}\times 13+\frac{6}{22555}\left(-1\right)\\\frac{6}{22555}\times 13+\frac{19}{9022}\left(-1\right)\end{matrix}\right)
ਮੈਟ੍ਰਿਸਿਸ ਨੂੰ ਗੁਣਾ ਕਰੋ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{125}{9022}\\\frac{61}{45110}\end{matrix}\right)
ਗਿਣਤੀ ਕਰੋ।
x=\frac{125}{9022},y=\frac{61}{45110}
ਮੈਟ੍ਰਿਕਸ ਐਲੀਮੈਂਟਾ (ਤੱਤਾਂ) x ਅਤੇ y ਨੂੰ ਬਾਹਰ ਕੱਢੋ।
950x-120y=13,-120x+490y=-1
ਬਾਹਰ ਕਰਕੇ ਹਲ ਕਰਨ ਦੇ ਲਈ, ਕਿਸੇ ਇੱਕ ਵੇਰੀਏਬਲ ਦਾ ਕੌਫੀਸ਼ਿਏਂਟ ਦੋਵੇਂ ਸਮੀਕਰਨਾਂ ਵਿੱਚ ਸਮਾਨ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ, ਤਾਂ ਜੋ ਜਦੋਂ ਇੱਕ ਸਮੀਕਰਨ ਨੂੰ ਦੂਜੇ ਵਿੱਚੋਂ ਘਟਾਇਆ ਜਾਵੇ ਤਾਂ ਵੇਰੀਏਬਲ ਰੱਦ ਹੋ ਜਾਵੇਗਾ।
-120\times 950x-120\left(-120\right)y=-120\times 13,950\left(-120\right)x+950\times 490y=950\left(-1\right)
950x ਅਤੇ -120x ਨੂੰ ਸਮਾਨ ਬਣਾਉਣ ਲਈ, ਪਹਿਲੇ ਸਮੀਕਰਨ ਦੇ ਹਰ ਪਾਸੇ ਉੱਤੇ ਸਾਰੀਆਂ ਸੰਖਿਆਵਾਂ ਨੂੰ -120 ਦੇ ਨਾਲ ਅਤੇ ਦੂਜੇ ਦੇ ਹਰ ਪਾਸੇ ਉੱਤੇ ਸਾਰੀਆਂ ਸੰਖਿਆਵਾਂ ਨੂੰ 950 ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
-114000x+14400y=-1560,-114000x+465500y=-950
ਸਪਸ਼ਟ ਕਰੋ।
-114000x+114000x+14400y-465500y=-1560+950
ਸਮਾਨ ਚਿੰਨ੍ਹ ਦੇ ਹਰ ਪਾਸੇ ਉੱਤੇ ਸਮਾਨ ਸੰਖਿਆਵਾਂ ਨੂੰ ਘਟਾ ਕੇ -114000x+14400y=-1560 ਵਿੱਚੋਂ -114000x+465500y=-950 ਨੂੰ ਘਟਾ ਦਿਓ।
14400y-465500y=-1560+950
-114000x ਨੂੰ 114000x ਵਿੱਚ ਜੋੜੋ। -114000x ਅਤੇ 114000x ਸ਼ਰਤਾਂ ਰੱਦ ਹੋ ਜਾਂਦੀਆਂ ਹਨ, ਇੱਕ ਸਮੀਕਰਨ ਬਚ ਜਾਂਦਾ ਹੈ ਜਿਸ ਦੇ ਨਾਲ ਸਿਰਫ਼ ਇੱਕ ਵੇਰੀਏਬਲ ਹੁੰਦਾ ਹੈ ਜਿਸ ਨੂੰ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
-451100y=-1560+950
14400y ਨੂੰ -465500y ਵਿੱਚ ਜੋੜੋ।
-451100y=-610
-1560 ਨੂੰ 950 ਵਿੱਚ ਜੋੜੋ।
y=\frac{61}{45110}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -451100 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
-120x+490\times \frac{61}{45110}=-1
-120x+490y=-1 ਵਿੱਚ y ਲਈ \frac{61}{45110} ਨੂੰ ਲਗਾ ਦਿਓ। ਕਿਉਂਕਿ ਇਸਦੇ ਨਤੀਜੇ ਵਜੋਂ ਮਿਲਣ ਵਾਲੇ ਸਮੀਕਰਨ ਵਿੱਤ ਸਿਰਫ਼ ਇੱਕ ਵੇਰੀਏਬਲ ਹੁੰਦਾ ਹੈ, ਤੁਸੀਂ ਸਿੱਧਾ x ਲਈ ਹਲ ਕਰ ਸਕਦੇ ਹੋ।
-120x+\frac{2989}{4511}=-1
490 ਨੂੰ \frac{61}{45110} ਵਾਰ ਗੁਣਾ ਕਰੋ।
-120x=-\frac{7500}{4511}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \frac{2989}{4511} ਨੂੰ ਘਟਾਓ।
x=\frac{125}{9022}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -120 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x=\frac{125}{9022},y=\frac{61}{45110}
ਸਿਸਟਮ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।