ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x, y ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

80x+160y=4,5600x+5600y=5536
ਸਬਸੀਟਿਉਸ਼ਨ ਨੂੰ ਵਰਤ ਰਹੇ ਸਮੀਕਰਨਾਂ ਦੇ ਜੋੜੇ ਨੂੰ ਹਲ ਕਰਨ ਲਈ, ਪਹਿਲੇ ਕਿਸੇ ਇੱਕ ਵੇਰੀਏਬਲ ਲਈ ਕਿਸੇ ਇੱਕ ਸਮੀਕਰਨ ਨੂੰ ਹਲ ਕਰੋ। ਫੇਰ, ਉਸ ਵੇਰੀਏਬਲ ਲਈ ਦੂਜੇ ਸਮੀਕਰਨ ਵਿੱਚ ਨਤੀਜੇ ਨੂੰ ਬਦਲ ਦਿਓ।
80x+160y=4
ਸਮੀਕਰਨਾਂ ਵਿੱਚੋਂ ਇੱਕ ਨੂੰ ਚੁਣੋ ਅਤੇ ਸਮਾਨ ਚਿੰਨ੍ਹ ਦੇ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ x ਨੂੰ ਅਲੱਗ ਕਰਕੇ ਇਸ ਨੂੰ x ਲਈ ਹੱਲ ਕਰੋ।
80x=-160y+4
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 160y ਨੂੰ ਘਟਾਓ।
x=\frac{1}{80}\left(-160y+4\right)
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 80 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x=-2y+\frac{1}{20}
\frac{1}{80} ਨੂੰ -160y+4 ਵਾਰ ਗੁਣਾ ਕਰੋ।
5600\left(-2y+\frac{1}{20}\right)+5600y=5536
ਦੂਜੇ ਸਮੀਕਰਨ 5600x+5600y=5536 ਵਿੱਚ, x ਲਈ -2y+\frac{1}{20} ਨੂੰ ਬਦਲ ਦਿਓ।
-11200y+280+5600y=5536
5600 ਨੂੰ -2y+\frac{1}{20} ਵਾਰ ਗੁਣਾ ਕਰੋ।
-5600y+280=5536
-11200y ਨੂੰ 5600y ਵਿੱਚ ਜੋੜੋ।
-5600y=5256
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 280 ਨੂੰ ਘਟਾਓ।
y=-\frac{657}{700}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -5600 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x=-2\left(-\frac{657}{700}\right)+\frac{1}{20}
x=-2y+\frac{1}{20} ਵਿੱਚ y ਲਈ -\frac{657}{700} ਨੂੰ ਲਗਾ ਦਿਓ। ਕਿਉਂਕਿ ਇਸਦੇ ਨਤੀਜੇ ਵਜੋਂ ਮਿਲਣ ਵਾਲੇ ਸਮੀਕਰਨ ਵਿੱਤ ਸਿਰਫ਼ ਇੱਕ ਵੇਰੀਏਬਲ ਹੁੰਦਾ ਹੈ, ਤੁਸੀਂ ਸਿੱਧਾ x ਲਈ ਹਲ ਕਰ ਸਕਦੇ ਹੋ।
x=\frac{657}{350}+\frac{1}{20}
-2 ਨੂੰ -\frac{657}{700} ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{1349}{700}
ਸਾਂਝਾ ਡਿਨੋਮੀਨੇਟਰ(ਹੇਠਲੀ ਸੰਖਿਆ) ਲੱਭ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ(ਉੱਤਲੀ ਸੰਖਿਆ) ਨੂੰ ਜੋੜ ਕੇ \frac{1}{20} ਨੂੰ \frac{657}{350} ਵਿੱਚ ਜੋੜੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
x=\frac{1349}{700},y=-\frac{657}{700}
ਸਿਸਟਮ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
80x+160y=4,5600x+5600y=5536
ਸਮੀਕਰਨਾਂ ਨੂੰ ਸਟੈਂਡਰਡ ਫਾਰਮ ਵਿੱਚ ਰੱਖੋ ਅਤੇ ਫੇਰ, ਸਮੀਕਰਨਾਂ ਦੇ ਸਿਸਟਮ ਨੂੰ ਹਲ ਕਰਨ ਲਈ ਮੈਟ੍ਰਿਕਸ ਵਰਤੋਂ।
\left(\begin{matrix}80&160\\5600&5600\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\5536\end{matrix}\right)
ਸਮੀਕਰਨਾਂ ਨੂੰ ਮੈਟ੍ਰਿਕਸ ਰੂਪ ਵਿੱਚ ਲਿਖੋ।
inverse(\left(\begin{matrix}80&160\\5600&5600\end{matrix}\right))\left(\begin{matrix}80&160\\5600&5600\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}80&160\\5600&5600\end{matrix}\right))\left(\begin{matrix}4\\5536\end{matrix}\right)
ਸਮੀਕਰਨ ਨੂੰ \left(\begin{matrix}80&160\\5600&5600\end{matrix}\right) ਦੇ ਉਲਟ ਮੈਟ੍ਰਿਕਸ ਦੇ ਨਾਲ ਗੁਣਾ ਕਰਨ ਦਿਓ।
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}80&160\\5600&5600\end{matrix}\right))\left(\begin{matrix}4\\5536\end{matrix}\right)
ਮੈਟ੍ਰਿਕਸ ਅਤੇ ਇਸਦੇ ਉਲਟ ਦਾ ਗੁਣਾ ਆਈਡੇਂਟਿਟੀ ਮੈਟ੍ਰਿਕਸ ਹੁੰਦਾ ਹੈ।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}80&160\\5600&5600\end{matrix}\right))\left(\begin{matrix}4\\5536\end{matrix}\right)
ਬਰਾਬਰ ਦੇ ਚਿੰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ ਮੈਟ੍ਰਿਸਿਸ ਨੂੰ ਗੁਣਾ ਕਰੋ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5600}{80\times 5600-160\times 5600}&-\frac{160}{80\times 5600-160\times 5600}\\-\frac{5600}{80\times 5600-160\times 5600}&\frac{80}{80\times 5600-160\times 5600}\end{matrix}\right)\left(\begin{matrix}4\\5536\end{matrix}\right)
ਮੈਟ੍ਰਿਕਸ 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right) ਲਈ, ਉਲਟਕ੍ਰਮ ਮੈਟ੍ਰਿਕਸ \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) ਹੈ, ਇਸ ਲਈ ਮੈਟ੍ਰਿਕਸ ਸਮੀਕਰਨ ਨੂੰ ਇੱਕ ਮੈਟ੍ਰਿਕਸ ਗੁਣਾ ਦੇ ਸਵਾਲ ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਿਆ ਜਾ ਸਕਦਾ ਹੈ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{80}&\frac{1}{2800}\\\frac{1}{80}&-\frac{1}{5600}\end{matrix}\right)\left(\begin{matrix}4\\5536\end{matrix}\right)
ਗਿਣਤੀ ਕਰੋ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{80}\times 4+\frac{1}{2800}\times 5536\\\frac{1}{80}\times 4-\frac{1}{5600}\times 5536\end{matrix}\right)
ਮੈਟ੍ਰਿਸਿਸ ਨੂੰ ਗੁਣਾ ਕਰੋ।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1349}{700}\\-\frac{657}{700}\end{matrix}\right)
ਗਿਣਤੀ ਕਰੋ।
x=\frac{1349}{700},y=-\frac{657}{700}
ਮੈਟ੍ਰਿਕਸ ਐਲੀਮੈਂਟਾ (ਤੱਤਾਂ) x ਅਤੇ y ਨੂੰ ਬਾਹਰ ਕੱਢੋ।
80x+160y=4,5600x+5600y=5536
ਬਾਹਰ ਕਰਕੇ ਹਲ ਕਰਨ ਦੇ ਲਈ, ਕਿਸੇ ਇੱਕ ਵੇਰੀਏਬਲ ਦਾ ਕੌਫੀਸ਼ਿਏਂਟ ਦੋਵੇਂ ਸਮੀਕਰਨਾਂ ਵਿੱਚ ਸਮਾਨ ਹੋਣਾ ਚਾਹੀਦਾ ਹੈ, ਤਾਂ ਜੋ ਜਦੋਂ ਇੱਕ ਸਮੀਕਰਨ ਨੂੰ ਦੂਜੇ ਵਿੱਚੋਂ ਘਟਾਇਆ ਜਾਵੇ ਤਾਂ ਵੇਰੀਏਬਲ ਰੱਦ ਹੋ ਜਾਵੇਗਾ।
5600\times 80x+5600\times 160y=5600\times 4,80\times 5600x+80\times 5600y=80\times 5536
80x ਅਤੇ 5600x ਨੂੰ ਸਮਾਨ ਬਣਾਉਣ ਲਈ, ਪਹਿਲੇ ਸਮੀਕਰਨ ਦੇ ਹਰ ਪਾਸੇ ਉੱਤੇ ਸਾਰੀਆਂ ਸੰਖਿਆਵਾਂ ਨੂੰ 5600 ਦੇ ਨਾਲ ਅਤੇ ਦੂਜੇ ਦੇ ਹਰ ਪਾਸੇ ਉੱਤੇ ਸਾਰੀਆਂ ਸੰਖਿਆਵਾਂ ਨੂੰ 80 ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
448000x+896000y=22400,448000x+448000y=442880
ਸਪਸ਼ਟ ਕਰੋ।
448000x-448000x+896000y-448000y=22400-442880
ਸਮਾਨ ਚਿੰਨ੍ਹ ਦੇ ਹਰ ਪਾਸੇ ਉੱਤੇ ਸਮਾਨ ਸੰਖਿਆਵਾਂ ਨੂੰ ਘਟਾ ਕੇ 448000x+896000y=22400 ਵਿੱਚੋਂ 448000x+448000y=442880 ਨੂੰ ਘਟਾ ਦਿਓ।
896000y-448000y=22400-442880
448000x ਨੂੰ -448000x ਵਿੱਚ ਜੋੜੋ। 448000x ਅਤੇ -448000x ਸ਼ਰਤਾਂ ਰੱਦ ਹੋ ਜਾਂਦੀਆਂ ਹਨ, ਇੱਕ ਸਮੀਕਰਨ ਬਚ ਜਾਂਦਾ ਹੈ ਜਿਸ ਦੇ ਨਾਲ ਸਿਰਫ਼ ਇੱਕ ਵੇਰੀਏਬਲ ਹੁੰਦਾ ਹੈ ਜਿਸ ਨੂੰ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
448000y=22400-442880
896000y ਨੂੰ -448000y ਵਿੱਚ ਜੋੜੋ।
448000y=-420480
22400 ਨੂੰ -442880 ਵਿੱਚ ਜੋੜੋ।
y=-\frac{657}{700}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 448000 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
5600x+5600\left(-\frac{657}{700}\right)=5536
5600x+5600y=5536 ਵਿੱਚ y ਲਈ -\frac{657}{700} ਨੂੰ ਲਗਾ ਦਿਓ। ਕਿਉਂਕਿ ਇਸਦੇ ਨਤੀਜੇ ਵਜੋਂ ਮਿਲਣ ਵਾਲੇ ਸਮੀਕਰਨ ਵਿੱਤ ਸਿਰਫ਼ ਇੱਕ ਵੇਰੀਏਬਲ ਹੁੰਦਾ ਹੈ, ਤੁਸੀਂ ਸਿੱਧਾ x ਲਈ ਹਲ ਕਰ ਸਕਦੇ ਹੋ।
5600x-5256=5536
5600 ਨੂੰ -\frac{657}{700} ਵਾਰ ਗੁਣਾ ਕਰੋ।
5600x=10792
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 5256 ਨੂੰ ਜੋੜੋ।
x=\frac{1349}{700}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 5600 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x=\frac{1349}{700},y=-\frac{657}{700}
ਸਿਸਟਮ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।