x ਲਈ ਹਲ ਕਰੋ
x\in \begin{bmatrix}1,3\end{bmatrix}
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
3x^{2}-12x+9=0
ਅਸਮਾਨਤਾ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, ਖੱਬੇ ਪਾਸੇ ਦੇ ਫੈਕਟਰ ਬਣਾਓ। ਦੋ-ਘਾਤੀ ਪੋਲੀਨੋਮੀਅਲ ਦੇ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੈਕਟਰ ਬਣਾਏ ਜਾ ਸਕਦੇ ਹਨ, ਜਿੱਥੇ x_{1} ਅਤੇ x_{2} ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ ax^{2}+bx+c=0 ਦੇ ਹੱਲ ਹੁੰਦੇ ਹਨ।
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 3\times 9}}{2\times 3}
ax^{2}+bx+c=0 ਫਾਰਮ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਦੋ-ਘਾਤੀ ਸੂਤਰ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਦੋ-ਘਾਤੀ ਸੂਤਰ ਵਿੱਚ 3 ਨੂੰ a ਦੇ ਨਾਲ, -12 ਨੂੰ b ਦੇ ਨਾਲ, ਅਤੇ 9 ਨੂੰ c ਦੇ ਨਾਲ ਬਦਲ ਦਿਓ।
x=\frac{12±6}{6}
ਗਣਨਾਵਾਂ ਕਰੋ।
x=3 x=1
x=\frac{12±6}{6} ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰੋ, ਜਦੋਂ ± ਪਲੱਸ ਅਤੇ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ।
3\left(x-3\right)\left(x-1\right)\leq 0
ਪ੍ਰਾਪਤ ਕੀਤੇ ਹੱਲਾਂ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਅਸਮਾਨਤਾ ਨੂੰ ਦੁਬਾਰਾ ਲਿਖੋ।
x-3\geq 0 x-1\leq 0
ਗੁਣਜ ਨੂੰ ≤0 ਹੋਣ ਲਈ, x-3 ਅਤੇ x-1 ਵੈਲਯੂਜ਼ ਵਿੱਚੋਂ ਇੱਕ ≥0 ਜਾਂ ਦੂਜੀ ≤0 ਹੋਣੀ ਚਾਹੀਦੀ ਹੈ। x-3\geq 0 ਅਤੇ x-1\leq 0 ਹੋਣ ‘ਤੇ ਮਾਮਲੇ ਉੱਪਰ ਵਿਚਾਰ ਕਰੋ।
x\in \emptyset
ਇਹ ਕਿਸੇ ਵੀ x ਲਈ ਗ਼ਲਤ ਹੈ।
x-1\geq 0 x-3\leq 0
x-3\leq 0 ਅਤੇ x-1\geq 0 ਹੋਣ ‘ਤੇ ਮਾਮਲੇ ਉੱਪਰ ਵਿਚਾਰ ਕਰੋ।
x\in \begin{bmatrix}1,3\end{bmatrix}
ਦੋਵੇਂ ਅਸਮਾਨਤਾਵਾਂ ਨੂੰ ਸੰਤੁਸ਼ਟ ਕਰ ਰਿਹਾ ਹੱਲ x\in \left[1,3\right] ਹੁੰਦਾ ਹੈ।
x\in \begin{bmatrix}1,3\end{bmatrix}
ਅੰਤਿਮ ਹੱਲ ਹਾਸਲ ਕੀਤੇ ਹੱਲਾਂ ਦਾ ਜੋੜ ਹੁੰਦਾ ਹੈ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}