ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

3x^{2}-12x+9=0
ਅਸਮਾਨਤਾ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, ਖੱਬੇ ਪਾਸੇ ਦੇ ਫੈਕਟਰ ਬਣਾਓ। ਦੋ-ਘਾਤੀ ਪੋਲੀਨੋਮੀਅਲ ਦੇ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੈਕਟਰ ਬਣਾਏ ਜਾ ਸਕਦੇ ਹਨ, ਜਿੱਥੇ x_{1} ਅਤੇ x_{2} ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ ax^{2}+bx+c=0 ਦੇ ਹੱਲ ਹੁੰਦੇ ਹਨ।
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 3\times 9}}{2\times 3}
ax^{2}+bx+c=0 ਫਾਰਮ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਦੋ-ਘਾਤੀ ਸੂਤਰ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਦੋ-ਘਾਤੀ ਸੂਤਰ ਵਿੱਚ 3 ਨੂੰ a ਦੇ ਨਾਲ, -12 ਨੂੰ b ਦੇ ਨਾਲ, ਅਤੇ 9 ਨੂੰ c ਦੇ ਨਾਲ ਬਦਲ ਦਿਓ।
x=\frac{12±6}{6}
ਗਣਨਾਵਾਂ ਕਰੋ।
x=3 x=1
x=\frac{12±6}{6} ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰੋ, ਜਦੋਂ ± ਪਲੱਸ ਅਤੇ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ।
3\left(x-3\right)\left(x-1\right)\leq 0
ਪ੍ਰਾਪਤ ਕੀਤੇ ਹੱਲਾਂ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਅਸਮਾਨਤਾ ਨੂੰ ਦੁਬਾਰਾ ਲਿਖੋ।
x-3\geq 0 x-1\leq 0
ਗੁਣਜ ਨੂੰ ≤0 ਹੋਣ ਲਈ, x-3 ਅਤੇ x-1 ਵੈਲਯੂਜ਼ ਵਿੱਚੋਂ ਇੱਕ ≥0 ਜਾਂ ਦੂਜੀ ≤0 ਹੋਣੀ ਚਾਹੀਦੀ ਹੈ। x-3\geq 0 ਅਤੇ x-1\leq 0 ਹੋਣ ‘ਤੇ ਮਾਮਲੇ ਉੱਪਰ ਵਿਚਾਰ ਕਰੋ।
x\in \emptyset
ਇਹ ਕਿਸੇ ਵੀ x ਲਈ ਗ਼ਲਤ ਹੈ।
x-1\geq 0 x-3\leq 0
x-3\leq 0 ਅਤੇ x-1\geq 0 ਹੋਣ ‘ਤੇ ਮਾਮਲੇ ਉੱਪਰ ਵਿਚਾਰ ਕਰੋ।
x\in \begin{bmatrix}1,3\end{bmatrix}
ਦੋਵੇਂ ਅਸਮਾਨਤਾਵਾਂ ਨੂੰ ਸੰਤੁਸ਼ਟ ਕਰ ਰਿਹਾ ਹੱਲ x\in \left[1,3\right] ਹੁੰਦਾ ਹੈ।
x\in \begin{bmatrix}1,3\end{bmatrix}
ਅੰਤਿਮ ਹੱਲ ਹਾਸਲ ਕੀਤੇ ਹੱਲਾਂ ਦਾ ਜੋੜ ਹੁੰਦਾ ਹੈ।