ਮੁਲਾਂਕਣ ਕਰੋ
\frac{k^{2}}{2}+2k+11
ਵਿਸਤਾਰ ਕਰੋ
\frac{k^{2}}{2}+2k+11
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
\frac{\left(k-4\right)^{2}}{2^{2}}+\left(\frac{2+k}{2}\right)^{2}+3k+6
\frac{k-4}{2} ਦੀ ਪਾਵਰ ਵਧਾਉਣ ਲਈ, ਅੰਸ਼ ਅਤੇ ਹਰ ਦੋਹਾਂ ਦੀ ਪਾਵਰ ਵਧਾਓ ਅਤੇ ਫੇਰ ਤਕਸੀਮ ਕਰੋ।
\frac{\left(k-4\right)^{2}}{2^{2}}+\frac{\left(2+k\right)^{2}}{2^{2}}+3k+6
\frac{2+k}{2} ਦੀ ਪਾਵਰ ਵਧਾਉਣ ਲਈ, ਅੰਸ਼ ਅਤੇ ਹਰ ਦੋਹਾਂ ਦੀ ਪਾਵਰ ਵਧਾਓ ਅਤੇ ਫੇਰ ਤਕਸੀਮ ਕਰੋ।
\frac{\left(k-4\right)^{2}+\left(2+k\right)^{2}}{2^{2}}+3k+6
ਕਿਉਂਕਿ \frac{\left(k-4\right)^{2}}{2^{2}} ਅਤੇ \frac{\left(2+k\right)^{2}}{2^{2}} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\frac{k^{2}-8k+16+4+4k+k^{2}}{2^{2}}+3k+6
\left(k-4\right)^{2}+\left(2+k\right)^{2} ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{2k^{2}-4k+20}{2^{2}}+3k+6
k^{2}-8k+16+4+4k+k^{2} ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
\frac{2\left(k^{2}-2k+10\right)}{2^{2}}+3k+6
\frac{2k^{2}-4k+20}{2^{2}} ਵਿੱਚ ਪਹਿਲਾਂ ਹੀ ਫੈਕਟਰ ਨਾ ਕੀਤੇ ਏਕਸਪ੍ਰੈਸ਼ਨਾਂ ਨੂੰ ਫੈਕਟਰ ਕਰੋ।
\frac{k^{2}-2k+10}{2}+3k+6
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਦੋਹਾਂ ਵਿੱਚ 2 ਨੂੰ ਰੱਦ ਕਰੋ।
\frac{k^{2}-2k+10}{2}+\frac{2\left(3k+6\right)}{2}
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। 3k+6 ਨੂੰ \frac{2}{2} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{k^{2}-2k+10+2\left(3k+6\right)}{2}
ਕਿਉਂਕਿ \frac{k^{2}-2k+10}{2} ਅਤੇ \frac{2\left(3k+6\right)}{2} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\frac{k^{2}-2k+10+6k+12}{2}
k^{2}-2k+10+2\left(3k+6\right) ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{k^{2}+4k+22}{2}
k^{2}-2k+10+6k+12 ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
\frac{\left(k-4\right)^{2}}{2^{2}}+\left(\frac{2+k}{2}\right)^{2}+3k+6
\frac{k-4}{2} ਦੀ ਪਾਵਰ ਵਧਾਉਣ ਲਈ, ਅੰਸ਼ ਅਤੇ ਹਰ ਦੋਹਾਂ ਦੀ ਪਾਵਰ ਵਧਾਓ ਅਤੇ ਫੇਰ ਤਕਸੀਮ ਕਰੋ।
\frac{\left(k-4\right)^{2}}{2^{2}}+\frac{\left(2+k\right)^{2}}{2^{2}}+3k+6
\frac{2+k}{2} ਦੀ ਪਾਵਰ ਵਧਾਉਣ ਲਈ, ਅੰਸ਼ ਅਤੇ ਹਰ ਦੋਹਾਂ ਦੀ ਪਾਵਰ ਵਧਾਓ ਅਤੇ ਫੇਰ ਤਕਸੀਮ ਕਰੋ।
\frac{\left(k-4\right)^{2}+\left(2+k\right)^{2}}{2^{2}}+3k+6
ਕਿਉਂਕਿ \frac{\left(k-4\right)^{2}}{2^{2}} ਅਤੇ \frac{\left(2+k\right)^{2}}{2^{2}} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\frac{k^{2}-8k+16+4+4k+k^{2}}{2^{2}}+3k+6
\left(k-4\right)^{2}+\left(2+k\right)^{2} ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{2k^{2}-4k+20}{2^{2}}+3k+6
k^{2}-8k+16+4+4k+k^{2} ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
\frac{2\left(k^{2}-2k+10\right)}{2^{2}}+3k+6
\frac{2k^{2}-4k+20}{2^{2}} ਵਿੱਚ ਪਹਿਲਾਂ ਹੀ ਫੈਕਟਰ ਨਾ ਕੀਤੇ ਏਕਸਪ੍ਰੈਸ਼ਨਾਂ ਨੂੰ ਫੈਕਟਰ ਕਰੋ।
\frac{k^{2}-2k+10}{2}+3k+6
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡਿਨੋਮੀਨੇਟਰ ਦੋਹਾਂ ਵਿੱਚ 2 ਨੂੰ ਰੱਦ ਕਰੋ।
\frac{k^{2}-2k+10}{2}+\frac{2\left(3k+6\right)}{2}
ਐਕਸਪ੍ਰੈਸ਼ਨ (ਚਿੰਨ੍ਹ-ਸੰਗ੍ਰਹਿ) ਨੂੰ ਜੋੜਣ ਜਾਂ ਘਟਾਉਣ ਲਈ, ਇਹਨਾਂ ਦੇ ਹਰਾਂ ਨੂੰ ਇੱਕ-ਸਮਾਨ ਕਰਨ ਲਈ ਇਹਨਾਂ ਨੂੰ ਫੈਲਾਓ। 3k+6 ਨੂੰ \frac{2}{2} ਵਾਰ ਗੁਣਾ ਕਰੋ।
\frac{k^{2}-2k+10+2\left(3k+6\right)}{2}
ਕਿਉਂਕਿ \frac{k^{2}-2k+10}{2} ਅਤੇ \frac{2\left(3k+6\right)}{2} ਦਾ ਸਮਾਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਉਹਨਾਂ ਦੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਜੋੜ ਕੇ ਇਹਨਾਂ ਨੂੰ ਜੋੜੋ।
\frac{k^{2}-2k+10+6k+12}{2}
k^{2}-2k+10+2\left(3k+6\right) ਵਿੱਚ ਗੁਣਾ ਕਰੋ।
\frac{k^{2}+4k+22}{2}
k^{2}-2k+10+6k+12 ਵਿੱਚ ਇੱਕ-ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}