x, y ਲਈ ਹਲ ਕਰੋ
y = -\frac{24}{5} = -4\frac{4}{5} = -4.8
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
3=4\left(x+2\right)
ਪਹਿਲੇ ਸਮੀਕਰਨ 'ਤੇ ਵਿਚਾਰ ਕਰੋ। ਵੇਰੀਏਬਲ x, -2 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 3\left(x+2\right), ਜੋ x+2,3 ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
3=4x+8
4 ਨੂੰ x+2 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
4x+8=3
ਪਾਸਿਆਂ ਨੂੰ ਸਵੈਪ ਕਰੋ ਤਾਂ ਜੋ ਸਾਰੇ ਵੇਰੀਏਬਲ ਟਰਮ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ ਹੋਣ।
4x=3-8
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 8 ਨੂੰ ਘਟਾ ਦਿਓ।
4x=-5
-5 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 3 ਵਿੱਚੋਂ 8 ਨੂੰ ਘਟਾ ਦਿਓ।
x=-\frac{5}{4}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 4 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
y=\frac{1}{-\frac{5}{4}}+\frac{1}{-\frac{5}{4}+1}
ਦੂਜੇ ਸਮੀਕਰਨ 'ਤੇ ਵਿਚਾਰ ਕਰੋ। ਸਮੀਕਰਨ ਵਿੱਚ ਵੇਰੀਏਬਲਾਂ ਦੀਆਂ ਗਿਆਤ ਵੈਲਯੂਜ਼ ਨੂੰ ਸੰਮਿਲਿਤ ਕਰੋ
y=1\left(-\frac{4}{5}\right)+\frac{1}{-\frac{5}{4}+1}
1 ਨੂੰ -\frac{5}{4} ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ 1ਨੂੰ -\frac{5}{4} ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
y=-\frac{4}{5}+\frac{1}{-\frac{5}{4}+1}
-\frac{4}{5} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 1 ਅਤੇ -\frac{4}{5} ਨੂੰ ਗੁਣਾ ਕਰੋ।
y=-\frac{4}{5}+\frac{1}{-\frac{1}{4}}
-\frac{1}{4} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -\frac{5}{4} ਅਤੇ 1 ਨੂੰ ਜੋੜੋ।
y=-\frac{4}{5}+1\left(-4\right)
1 ਨੂੰ -\frac{1}{4} ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ 1ਨੂੰ -\frac{1}{4} ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
y=-\frac{4}{5}-4
-4 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 1 ਅਤੇ -4 ਨੂੰ ਗੁਣਾ ਕਰੋ।
y=-\frac{24}{5}
-\frac{24}{5} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -\frac{4}{5} ਵਿੱਚੋਂ 4 ਨੂੰ ਘਟਾ ਦਿਓ।
x=-\frac{5}{4} y=-\frac{24}{5}
ਸਿਸਟਮ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}