x ਲਈ ਹਲ ਕਰੋ
x=2\sqrt{5}-2\approx 2.472135955
x=-2\sqrt{5}-2\approx -6.472135955
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
21-4x-x^{2}=5
7+x ਨੂੰ 3-x ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
21-4x-x^{2}-5=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 5 ਨੂੰ ਘਟਾ ਦਿਓ।
16-4x-x^{2}=0
16 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 21 ਵਿੱਚੋਂ 5 ਨੂੰ ਘਟਾ ਦਿਓ।
-x^{2}-4x+16=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-1\right)\times 16}}{2\left(-1\right)}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ -1 ਨੂੰ a ਲਈ, -4 ਨੂੰ b ਲਈ, ਅਤੇ 16 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-1\right)\times 16}}{2\left(-1\right)}
-4 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-\left(-4\right)±\sqrt{16+4\times 16}}{2\left(-1\right)}
-4 ਨੂੰ -1 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-4\right)±\sqrt{16+64}}{2\left(-1\right)}
4 ਨੂੰ 16 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-4\right)±\sqrt{80}}{2\left(-1\right)}
16 ਨੂੰ 64 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\left(-4\right)±4\sqrt{5}}{2\left(-1\right)}
80 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{4±4\sqrt{5}}{2\left(-1\right)}
-4 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 4 ਹੈ।
x=\frac{4±4\sqrt{5}}{-2}
2 ਨੂੰ -1 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{4\sqrt{5}+4}{-2}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{4±4\sqrt{5}}{-2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 4 ਨੂੰ 4\sqrt{5} ਵਿੱਚ ਜੋੜੋ।
x=-2\sqrt{5}-2
4+4\sqrt{5} ਨੂੰ -2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{4-4\sqrt{5}}{-2}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{4±4\sqrt{5}}{-2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 4 ਵਿੱਚੋਂ 4\sqrt{5} ਨੂੰ ਘਟਾਓ।
x=2\sqrt{5}-2
4-4\sqrt{5} ਨੂੰ -2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=-2\sqrt{5}-2 x=2\sqrt{5}-2
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
21-4x-x^{2}=5
7+x ਨੂੰ 3-x ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
-4x-x^{2}=5-21
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 21 ਨੂੰ ਘਟਾ ਦਿਓ।
-4x-x^{2}=-16
-16 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 5 ਵਿੱਚੋਂ 21 ਨੂੰ ਘਟਾ ਦਿਓ।
-x^{2}-4x=-16
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
\frac{-x^{2}-4x}{-1}=-\frac{16}{-1}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -1 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\left(-\frac{4}{-1}\right)x=-\frac{16}{-1}
-1 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -1 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}+4x=-\frac{16}{-1}
-4 ਨੂੰ -1 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}+4x=16
-16 ਨੂੰ -1 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}+4x+2^{2}=16+2^{2}
4, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ 2 ਨਿਕਲੇ। ਫੇਰ, 2 ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}+4x+4=16+4
2 ਦਾ ਵਰਗ ਕਰੋ।
x^{2}+4x+4=20
16 ਨੂੰ 4 ਵਿੱਚ ਜੋੜੋ।
\left(x+2\right)^{2}=20
ਫੈਕਟਰ x^{2}+4x+4। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x+2\right)^{2}}=\sqrt{20}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x+2=2\sqrt{5} x+2=-2\sqrt{5}
ਸਪਸ਼ਟ ਕਰੋ।
x=2\sqrt{5}-2 x=-2\sqrt{5}-2
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 2 ਨੂੰ ਘਟਾਓ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}